Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| def sinusoidal_embedding_1d(dim, position): | |
| sinusoid = torch.outer(position.type(torch.float64), torch.pow(10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2))) | |
| x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
| return x.to(position.dtype) | |
| class WanMotionControllerModel(torch.nn.Module): | |
| def __init__(self, freq_dim=256, dim=1536): | |
| super().__init__() | |
| self.freq_dim = freq_dim | |
| self.linear = nn.Sequential( | |
| nn.Linear(freq_dim, dim), | |
| nn.SiLU(), | |
| nn.Linear(dim, dim), | |
| nn.SiLU(), | |
| nn.Linear(dim, dim * 6), | |
| ) | |
| self.init_weight() | |
| def forward(self, motion_bucket_id): | |
| emb = sinusoidal_embedding_1d(self.freq_dim, motion_bucket_id * 10) | |
| emb = self.linear(emb) | |
| return emb | |
| def init_weight(self): | |
| state_dict = self.linear[-1].state_dict() | |
| state_dict = {i: state_dict[i] * 0 for i in state_dict} | |
| self.linear[-1].load_state_dict(state_dict) | |
| if __name__ == "__main__": | |
| dim = 1536 | |
| motion_controller = WanMotionControllerModel() | |
| motion_bucket_id = 100.0 | |
| motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(dtype=torch.float32, device='cpu') | |
| out = motion_controller(motion_bucket_id).unflatten(1, (6, dim)) | |
| print(out.size()) |