Spaces:
Runtime error
Runtime error
| # Modified from https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py | |
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import glob | |
| import json | |
| import math | |
| import os | |
| import types | |
| import warnings | |
| from typing import Any, Dict, Optional, Union | |
| import numpy as np | |
| import torch | |
| import torch.cuda.amp as amp | |
| import torch.nn as nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders.single_file_model import FromOriginalModelMixin | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.utils import is_torch_version, logging | |
| from torch import nn | |
| from einops import rearrange | |
| from .vocal_projector_fantasy_14B import FantasyTalkingVocalCondition14BModel | |
| from ..dist import (get_sequence_parallel_rank, | |
| get_sequence_parallel_world_size, get_sp_group, | |
| xFuserLongContextAttention) | |
| from .cache_utils import TeaCache | |
| from ..dist.wan_xfuser import usp_attn_forward | |
| try: | |
| import flash_attn_interface | |
| FLASH_ATTN_3_AVAILABLE = True | |
| except ModuleNotFoundError: | |
| FLASH_ATTN_3_AVAILABLE = False | |
| try: | |
| import flash_attn | |
| FLASH_ATTN_2_AVAILABLE = True | |
| except ModuleNotFoundError: | |
| FLASH_ATTN_2_AVAILABLE = False | |
| def flash_attention( | |
| q, | |
| k, | |
| v, | |
| q_lens=None, | |
| k_lens=None, | |
| dropout_p=0., | |
| softmax_scale=None, | |
| q_scale=None, | |
| causal=False, | |
| window_size=(-1, -1), | |
| deterministic=False, | |
| dtype=torch.bfloat16, | |
| version=None, | |
| ): | |
| """ | |
| q: [B, Lq, Nq, C1]. | |
| k: [B, Lk, Nk, C1]. | |
| v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. | |
| q_lens: [B]. | |
| k_lens: [B]. | |
| dropout_p: float. Dropout probability. | |
| softmax_scale: float. The scaling of QK^T before applying softmax. | |
| causal: bool. Whether to apply causal attention mask. | |
| window_size: (left right). If not (-1, -1), apply sliding window local attention. | |
| deterministic: bool. If True, slightly slower and uses more memory. | |
| dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. | |
| """ | |
| half_dtypes = (torch.float16, torch.bfloat16) | |
| assert dtype in half_dtypes | |
| assert q.device.type == 'cuda' and q.size(-1) <= 256 | |
| # params | |
| b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype | |
| def half(x): | |
| return x if x.dtype in half_dtypes else x.to(dtype) | |
| # preprocess query | |
| if q_lens is None: | |
| q = half(q.flatten(0, 1)) | |
| q_lens = torch.tensor( | |
| [lq] * b, dtype=torch.int32).to( | |
| device=q.device, non_blocking=True) | |
| else: | |
| q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) | |
| # preprocess key, value | |
| if k_lens is None: | |
| k = half(k.flatten(0, 1)) | |
| v = half(v.flatten(0, 1)) | |
| k_lens = torch.tensor( | |
| [lk] * b, dtype=torch.int32).to( | |
| device=k.device, non_blocking=True) | |
| else: | |
| k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) | |
| v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) | |
| q = q.to(v.dtype) | |
| k = k.to(v.dtype) | |
| if q_scale is not None: | |
| q = q * q_scale | |
| if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: | |
| warnings.warn( | |
| 'Flash attention 3 is not available, use flash attention 2 instead.' | |
| ) | |
| # apply attention | |
| if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: | |
| # Note: dropout_p, window_size are not supported in FA3 now. | |
| x = flash_attn_interface.flash_attn_varlen_func( | |
| q=q, | |
| k=k, | |
| v=v, | |
| cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
| 0, dtype=torch.int32).to(q.device, non_blocking=True), | |
| cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
| 0, dtype=torch.int32).to(q.device, non_blocking=True), | |
| seqused_q=None, | |
| seqused_k=None, | |
| max_seqlen_q=lq, | |
| max_seqlen_k=lk, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| deterministic=deterministic)[0].unflatten(0, (b, lq)) | |
| else: | |
| assert FLASH_ATTN_2_AVAILABLE | |
| x = flash_attn.flash_attn_varlen_func( | |
| q=q, | |
| k=k, | |
| v=v, | |
| cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
| 0, dtype=torch.int32).to(q.device, non_blocking=True), | |
| cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
| 0, dtype=torch.int32).to(q.device, non_blocking=True), | |
| max_seqlen_q=lq, | |
| max_seqlen_k=lk, | |
| dropout_p=dropout_p, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| window_size=window_size, | |
| deterministic=deterministic).unflatten(0, (b, lq)) | |
| # output | |
| return x.type(out_dtype) | |
| def attention( | |
| q, | |
| k, | |
| v, | |
| q_lens=None, | |
| k_lens=None, | |
| dropout_p=0., | |
| softmax_scale=None, | |
| q_scale=None, | |
| causal=False, | |
| window_size=(-1, -1), | |
| deterministic=False, | |
| dtype=torch.bfloat16, | |
| fa_version=None, | |
| ): | |
| if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: | |
| return flash_attention( | |
| q=q, | |
| k=k, | |
| v=v, | |
| q_lens=q_lens, | |
| k_lens=k_lens, | |
| dropout_p=dropout_p, | |
| softmax_scale=softmax_scale, | |
| q_scale=q_scale, | |
| causal=causal, | |
| window_size=window_size, | |
| deterministic=deterministic, | |
| dtype=dtype, | |
| version=fa_version, | |
| ) | |
| else: | |
| if q_lens is not None or k_lens is not None: | |
| warnings.warn( | |
| 'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' | |
| ) | |
| attn_mask = None | |
| q = q.transpose(1, 2) | |
| k = k.transpose(1, 2) | |
| v = v.transpose(1, 2) | |
| if torch.backends.cuda.flash_sdp_enabled() is False or torch.backends.cuda.enable_flash_sdp is False: | |
| print(1/0) | |
| out = torch.nn.functional.scaled_dot_product_attention( | |
| q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) | |
| out = out.transpose(1, 2).contiguous() | |
| return out | |
| def sinusoidal_embedding_1d(dim, position): | |
| # preprocess | |
| assert dim % 2 == 0 | |
| half = dim // 2 | |
| position = position.type(torch.float64) | |
| # calculation | |
| sinusoid = torch.outer( | |
| position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
| x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
| return x | |
| def rope_params(max_seq_len, dim, theta=10000): | |
| assert dim % 2 == 0 | |
| freqs = torch.outer( | |
| torch.arange(max_seq_len), | |
| 1.0 / torch.pow(theta, | |
| torch.arange(0, dim, 2).to(torch.float64).div(dim))) | |
| freqs = torch.polar(torch.ones_like(freqs), freqs) | |
| return freqs | |
| # modified from https://github.com/thu-ml/RIFLEx/blob/main/riflex_utils.py | |
| def get_1d_rotary_pos_embed_riflex( | |
| pos: Union[np.ndarray, int], | |
| dim: int, | |
| theta: float = 10000.0, | |
| use_real=False, | |
| k: Optional[int] = None, | |
| L_test: Optional[int] = None, | |
| L_test_scale: Optional[int] = None, | |
| ): | |
| """ | |
| RIFLEx: Precompute the frequency tensor for complex exponentials (cis) with given dimensions. | |
| This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end | |
| index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64 | |
| data type. | |
| Args: | |
| dim (`int`): Dimension of the frequency tensor. | |
| pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar | |
| theta (`float`, *optional*, defaults to 10000.0): | |
| Scaling factor for frequency computation. Defaults to 10000.0. | |
| use_real (`bool`, *optional*): | |
| If True, return real part and imaginary part separately. Otherwise, return complex numbers. | |
| k (`int`, *optional*, defaults to None): the index for the intrinsic frequency in RoPE | |
| L_test (`int`, *optional*, defaults to None): the number of frames for inference | |
| Returns: | |
| `torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2] | |
| """ | |
| assert dim % 2 == 0 | |
| if isinstance(pos, int): | |
| pos = torch.arange(pos) | |
| if isinstance(pos, np.ndarray): | |
| pos = torch.from_numpy(pos) # type: ignore # [S] | |
| freqs = 1.0 / torch.pow(theta, | |
| torch.arange(0, dim, 2).to(torch.float64).div(dim)) | |
| # === Riflex modification start === | |
| # Reduce the intrinsic frequency to stay within a single period after extrapolation (see Eq. (8)). | |
| # Empirical observations show that a few videos may exhibit repetition in the tail frames. | |
| # To be conservative, we multiply by 0.9 to keep the extrapolated length below 90% of a single period. | |
| if k is not None: | |
| freqs[k - 1] = 0.9 * 2 * torch.pi / L_test | |
| # === Riflex modification end === | |
| if L_test_scale is not None: | |
| freqs[k - 1] = freqs[k - 1] / L_test_scale | |
| freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2] | |
| if use_real: | |
| freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D] | |
| freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D] | |
| return freqs_cos, freqs_sin | |
| else: | |
| # lumina | |
| freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2] | |
| return freqs_cis | |
| def rope_apply(x, grid_sizes, freqs): | |
| n, c = x.size(2), x.size(3) // 2 | |
| # split freqs | |
| freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
| # loop over samples | |
| output = [] | |
| for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
| seq_len = f * h * w | |
| # precompute multipliers | |
| x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float32).reshape( | |
| seq_len, n, -1, 2)) | |
| freqs_i = torch.cat([ | |
| freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
| freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
| freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
| ], | |
| dim=-1).reshape(seq_len, 1, -1) | |
| # apply rotary embedding | |
| x_i = torch.view_as_real(x_i * freqs_i).flatten(2) | |
| x_i = torch.cat([x_i, x[i, seq_len:]]) | |
| # append to collection | |
| output.append(x_i) | |
| return torch.stack(output).float() | |
| class WanRMSNorm(nn.Module): | |
| def __init__(self, dim, eps=1e-5): | |
| super().__init__() | |
| self.dim = dim | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def forward(self, x): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| """ | |
| return self._norm(x.float()).type_as(x) * self.weight | |
| def _norm(self, x): | |
| return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) | |
| class WanLayerNorm(nn.LayerNorm): | |
| def __init__(self, dim, eps=1e-6, elementwise_affine=False): | |
| super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) | |
| def forward(self, x): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| """ | |
| return super().forward(x.float()).type_as(x) | |
| class WanSelfAttention(nn.Module): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6): | |
| assert dim % num_heads == 0 | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.eps = eps | |
| # layers | |
| self.q = nn.Linear(dim, dim) | |
| self.k = nn.Linear(dim, dim) | |
| self.v = nn.Linear(dim, dim) | |
| self.o = nn.Linear(dim, dim) | |
| self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, seq_lens, grid_sizes, freqs, dtype): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
| seq_lens(Tensor): Shape [B] | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
| # query, key, value function | |
| def qkv_fn(x): | |
| q = self.norm_q(self.q(x.to(dtype))).view(b, s, n, d) | |
| k = self.norm_k(self.k(x.to(dtype))).view(b, s, n, d) | |
| v = self.v(x.to(dtype)).view(b, s, n, d) | |
| return q, k, v | |
| q, k, v = qkv_fn(x) | |
| x = attention( | |
| q=rope_apply(q, grid_sizes, freqs).to(dtype), | |
| k=rope_apply(k, grid_sizes, freqs).to(dtype), | |
| v=v.to(dtype), | |
| k_lens=seq_lens, | |
| window_size=self.window_size) | |
| x = x.to(dtype) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| return x | |
| class WanT2VCrossAttention(WanSelfAttention): | |
| def forward(self, x, context, context_lens, dtype): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| context_lens(Tensor): Shape [B] | |
| """ | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x.to(dtype))).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context.to(dtype))).view(b, -1, n, d) | |
| v = self.v(context.to(dtype)).view(b, -1, n, d) | |
| # compute attention | |
| x = attention( | |
| q.to(dtype), | |
| k.to(dtype), | |
| v.to(dtype), | |
| k_lens=context_lens | |
| ) | |
| x = x.to(dtype) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| return x | |
| class WanI2VCrossAttention(WanSelfAttention): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6): | |
| super().__init__(dim, num_heads, window_size, qk_norm, eps) | |
| # self.alpha = nn.Parameter(torch.zeros((1, ))) | |
| self.k_img = nn.Linear(dim, dim) | |
| self.v_img = nn.Linear(dim, dim) | |
| self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, context, context_lens, dtype): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| context_lens(Tensor): Shape [B] | |
| """ | |
| context_img = context[:, :257] | |
| context = context[:, 257:] | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x.to(dtype))).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context.to(dtype))).view(b, -1, n, d) | |
| v = self.v(context.to(dtype)).view(b, -1, n, d) | |
| k_img = self.norm_k_img(self.k_img(context_img.to(dtype))).view(b, -1, n, d) | |
| v_img = self.v_img(context_img.to(dtype)).view(b, -1, n, d) | |
| img_x = attention( | |
| q.to(dtype), | |
| k_img.to(dtype), | |
| v_img.to(dtype), | |
| k_lens=None | |
| ) | |
| img_x = img_x.to(dtype) | |
| # compute attention | |
| x = attention( | |
| q.to(dtype), | |
| k.to(dtype), | |
| v.to(dtype), | |
| k_lens=context_lens | |
| ) | |
| x = x.to(dtype) | |
| # output | |
| x = x.flatten(2) | |
| img_x = img_x.flatten(2) | |
| x = x + img_x | |
| x = self.o(x) | |
| return x | |
| class WanI2VTalkingCrossAttention(WanSelfAttention): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6, | |
| audio_context_dim=1024 | |
| ): | |
| super().__init__(dim, num_heads, window_size, qk_norm, eps) | |
| # 14B should be audio_context_dim=2048 | |
| # 1.3B should be audio_context_dim=1024 | |
| # self.alpha = nn.Parameter(torch.zeros((1, ))) | |
| self.k_img = nn.Linear(dim, dim) | |
| self.v_img = nn.Linear(dim, dim) | |
| self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| self.k_vocal = nn.Linear(dim, dim) | |
| self.v_vocal = nn.Linear(dim, dim) | |
| nn.init.zeros_(self.k_vocal.weight) | |
| nn.init.zeros_(self.v_vocal.weight) | |
| if self.k_vocal.bias is not None: | |
| nn.init.zeros_(self.k_vocal.bias) | |
| if self.v_vocal.bias is not None: | |
| nn.init.zeros_(self.v_vocal.bias) | |
| def forward(self, x, context, context_lens, dtype, vocal_context=None, vocal_context_lens=None): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| context_lens(Tensor): Shape [B] | |
| """ | |
| # print(f"The size of x in cross attention: {x.size()}") # [1, 21504, 5120] | |
| # print(f"The size of context_clip in cross attention: {context_img.size()}") # [1, 257, 5120] | |
| context_img = context[:, :257] | |
| context = context[:, 257:] | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x.to(dtype))).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context.to(dtype))).view(b, -1, n, d) | |
| v = self.v(context.to(dtype)).view(b, -1, n, d) | |
| k_img = self.norm_k_img(self.k_img(context_img.to(dtype))).view(b, -1, n, d) | |
| v_img = self.v_img(context_img.to(dtype)).view(b, -1, n, d) | |
| img_x = attention( | |
| q.to(dtype), | |
| k_img.to(dtype), | |
| v_img.to(dtype), | |
| k_lens=None | |
| ) | |
| img_x = img_x.to(dtype) | |
| # compute attention | |
| x = attention( | |
| q.to(dtype), | |
| k.to(dtype), | |
| v.to(dtype), | |
| k_lens=context_lens | |
| ) | |
| x = x.to(dtype) | |
| latents_num_frames = 21 | |
| if len(vocal_context.shape) == 4: | |
| vocal_q = q.view(b * latents_num_frames, -1, n, d) | |
| vocal_ip_key = self.k_vocal(vocal_context).view(b * latents_num_frames, -1, n, d) | |
| vocal_ip_value = self.v_vocal(vocal_context).view(b * latents_num_frames, -1, n, d) | |
| vocal_x = attention( | |
| vocal_q.to(dtype), | |
| vocal_ip_key.to(dtype), | |
| vocal_ip_value.to(dtype), | |
| k_lens=vocal_context_lens | |
| ) | |
| vocal_x = vocal_x.view(b, q.size(1), n, d) | |
| vocal_x = vocal_x.flatten(2) | |
| else: | |
| vocal_ip_key = self.k_vocal(vocal_context).view(b, -1, n, d) | |
| vocal_ip_value = self.v_vocal(vocal_context).view(b, -1, n, d) | |
| vocal_x = attention( | |
| q.to(dtype), | |
| vocal_ip_key.to(dtype), | |
| vocal_ip_value.to(dtype), | |
| k_lens=None, | |
| ) | |
| vocal_x = vocal_x.flatten(2) | |
| # output | |
| x = x.flatten(2) | |
| img_x = img_x.flatten(2) | |
| x = x + img_x + vocal_x | |
| x = self.o(x) | |
| return x | |
| WAN_CROSSATTENTION_CLASSES = { | |
| 't2v_cross_attn': WanT2VCrossAttention, | |
| 'i2v_cross_attn': WanI2VCrossAttention, | |
| } | |
| class WanAttentionBlock(nn.Module): | |
| def __init__(self, | |
| cross_attn_type, | |
| dim, | |
| ffn_dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=False, | |
| eps=1e-6): | |
| super().__init__() | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # layers | |
| self.norm1 = WanLayerNorm(dim, eps) | |
| self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, | |
| eps) | |
| self.norm3 = WanLayerNorm( | |
| dim, eps, | |
| elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
| # self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps) | |
| self.cross_attn = WanI2VTalkingCrossAttention(dim, num_heads, (-1, -1), qk_norm, eps) | |
| self.norm2 = WanLayerNorm(dim, eps) | |
| self.ffn = nn.Sequential( | |
| nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(ffn_dim, dim)) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim ** 0.5) | |
| def forward( | |
| self, | |
| x, | |
| e, | |
| seq_lens, | |
| grid_sizes, | |
| freqs, | |
| context, | |
| context_lens, | |
| dtype=torch.float32, | |
| vocal_context=None, | |
| vocal_context_lens=None, | |
| ): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| e(Tensor): Shape [B, 6, C] | |
| seq_lens(Tensor): Shape [B], length of each sequence in batch | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| e = (self.modulation + e).chunk(6, dim=1) | |
| # self-attention | |
| temp_x = self.norm1(x) * (1 + e[1]) + e[0] | |
| temp_x = temp_x.to(dtype) | |
| y = self.self_attn(temp_x, seq_lens, grid_sizes, freqs, dtype) | |
| x = x + y * e[2] | |
| # cross-attention & ffn function | |
| def cross_attn_ffn(x, context, context_lens, e, vocal_context, vocal_context_lens): | |
| # cross-attention | |
| x = x + self.cross_attn(self.norm3(x), context, context_lens, dtype, vocal_context, vocal_context_lens) | |
| # ffn function | |
| temp_x = self.norm2(x) * (1 + e[4]) + e[3] | |
| temp_x = temp_x.to(dtype) | |
| y = self.ffn(temp_x) | |
| x = x + y * e[5] | |
| return x | |
| x = cross_attn_ffn(x, context, context_lens, e, vocal_context, vocal_context_lens) | |
| return x | |
| class Head(nn.Module): | |
| def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
| super().__init__() | |
| self.dim = dim | |
| self.out_dim = out_dim | |
| self.patch_size = patch_size | |
| self.eps = eps | |
| # layers | |
| out_dim = math.prod(patch_size) * out_dim | |
| self.norm = WanLayerNorm(dim, eps) | |
| self.head = nn.Linear(dim, out_dim) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim ** 0.5) | |
| def forward(self, x, e): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| e(Tensor): Shape [B, C] | |
| """ | |
| e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1) | |
| x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) | |
| return x | |
| class MLPProj(torch.nn.Module): | |
| def __init__(self, in_dim, out_dim): | |
| super().__init__() | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim), | |
| torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim), | |
| torch.nn.LayerNorm(out_dim)) | |
| def forward(self, image_embeds): | |
| clip_extra_context_tokens = self.proj(image_embeds) | |
| return clip_extra_context_tokens | |
| class WanTransformer3DFantasy14BModel(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
| r""" | |
| Wan diffusion backbone supporting both text-to-video and image-to-video. | |
| """ | |
| # ignore_for_config = [ | |
| # 'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size' | |
| # ] | |
| # _no_split_modules = ['WanAttentionBlock'] | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| model_type='t2v', | |
| patch_size=(1, 2, 2), | |
| text_len=512, | |
| in_dim=16, | |
| dim=2048, | |
| ffn_dim=8192, | |
| freq_dim=256, | |
| text_dim=4096, | |
| out_dim=16, | |
| num_heads=16, | |
| num_layers=32, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6, | |
| in_channels=16, | |
| hidden_size=2048, | |
| ): | |
| r""" | |
| Initialize the diffusion model backbone. | |
| Args: | |
| model_type (`str`, *optional*, defaults to 't2v'): | |
| Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
| patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
| 3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
| text_len (`int`, *optional*, defaults to 512): | |
| Fixed length for text embeddings | |
| in_dim (`int`, *optional*, defaults to 16): | |
| Input video channels (C_in) | |
| dim (`int`, *optional*, defaults to 2048): | |
| Hidden dimension of the transformer | |
| ffn_dim (`int`, *optional*, defaults to 8192): | |
| Intermediate dimension in feed-forward network | |
| freq_dim (`int`, *optional*, defaults to 256): | |
| Dimension for sinusoidal time embeddings | |
| text_dim (`int`, *optional*, defaults to 4096): | |
| Input dimension for text embeddings | |
| out_dim (`int`, *optional*, defaults to 16): | |
| Output video channels (C_out) | |
| num_heads (`int`, *optional*, defaults to 16): | |
| Number of attention heads | |
| num_layers (`int`, *optional*, defaults to 32): | |
| Number of transformer blocks | |
| window_size (`tuple`, *optional*, defaults to (-1, -1)): | |
| Window size for local attention (-1 indicates global attention) | |
| qk_norm (`bool`, *optional*, defaults to True): | |
| Enable query/key normalization | |
| cross_attn_norm (`bool`, *optional*, defaults to False): | |
| Enable cross-attention normalization | |
| eps (`float`, *optional*, defaults to 1e-6): | |
| Epsilon value for normalization layers | |
| """ | |
| super().__init__() | |
| assert model_type in ['t2v', 'i2v'] | |
| self.model_type = model_type | |
| self.patch_size = patch_size | |
| self.text_len = text_len | |
| self.in_dim = in_dim | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.freq_dim = freq_dim | |
| self.text_dim = text_dim | |
| self.out_dim = out_dim | |
| self.num_heads = num_heads | |
| self.num_layers = num_layers | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # embeddings | |
| self.patch_embedding = nn.Conv3d( | |
| in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
| self.text_embedding = nn.Sequential( | |
| nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(dim, dim)) | |
| self.time_embedding = nn.Sequential( | |
| nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
| self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) | |
| # blocks | |
| cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' | |
| self.blocks = nn.ModuleList([ | |
| WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
| window_size, qk_norm, cross_attn_norm, eps) | |
| for _ in range(num_layers) | |
| ]) | |
| # head | |
| self.head = Head(dim, out_dim, patch_size, eps) | |
| # buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
| assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
| d = dim // num_heads | |
| self.d = d | |
| self.freqs = torch.cat( | |
| [ | |
| rope_params(1024, d - 4 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)) | |
| ], | |
| dim=1 | |
| ) | |
| if model_type == 'i2v': | |
| self.img_emb = MLPProj(1280, dim) | |
| self.teacache = None | |
| self.gradient_checkpointing = False | |
| self.sp_world_size = 1 | |
| self.sp_world_rank = 0 | |
| self.vocal_projector = FantasyTalkingVocalCondition14BModel(audio_in_dim=768, audio_proj_dim=dim, dit_dim=dim) | |
| def enable_teacache( | |
| self, | |
| coefficients, | |
| num_steps: int, | |
| rel_l1_thresh: float, | |
| num_skip_start_steps: int = 0, | |
| offload: bool = True | |
| ): | |
| self.teacache = TeaCache( | |
| coefficients, num_steps, rel_l1_thresh=rel_l1_thresh, num_skip_start_steps=num_skip_start_steps, | |
| offload=offload | |
| ) | |
| def disable_teacache(self): | |
| self.teacache = None | |
| def enable_riflex( | |
| self, | |
| k=6, | |
| L_test=66, | |
| L_test_scale=4.886, | |
| ): | |
| device = self.freqs.device | |
| self.freqs = torch.cat( | |
| [ | |
| get_1d_rotary_pos_embed_riflex(1024, self.d - 4 * (self.d // 6), use_real=False, k=k, L_test=L_test, | |
| L_test_scale=L_test_scale), | |
| rope_params(1024, 2 * (self.d // 6)), | |
| rope_params(1024, 2 * (self.d // 6)) | |
| ], | |
| dim=1 | |
| ).to(device) | |
| def disable_riflex(self): | |
| device = self.freqs.device | |
| self.freqs = torch.cat( | |
| [ | |
| rope_params(1024, self.d - 4 * (self.d // 6)), | |
| rope_params(1024, 2 * (self.d // 6)), | |
| rope_params(1024, 2 * (self.d // 6)) | |
| ], | |
| dim=1 | |
| ).to(device) | |
| def enable_multi_gpus_inference(self, ): | |
| self.sp_world_size = get_sequence_parallel_world_size() | |
| self.sp_world_rank = get_sequence_parallel_rank() | |
| for block in self.blocks: | |
| block.self_attn.forward = types.MethodType( | |
| usp_attn_forward, block.self_attn) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| self.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| x, | |
| t, | |
| context, | |
| seq_len, | |
| clip_fea=None, | |
| y=None, | |
| cond_flag=True, | |
| vocal_embeddings=None, | |
| is_clip_level_modeling=False, | |
| ): | |
| r""" | |
| Forward pass through the diffusion model | |
| Args: | |
| x (List[Tensor]): | |
| List of input video tensors, each with shape [C_in, F, H, W] | |
| t (Tensor): | |
| Diffusion timesteps tensor of shape [B] | |
| context (List[Tensor]): | |
| List of text embeddings each with shape [L, C] | |
| seq_len (`int`): | |
| Maximum sequence length for positional encoding | |
| clip_fea (Tensor, *optional*): | |
| CLIP image features for image-to-video mode | |
| y (List[Tensor], *optional*): | |
| Conditional video inputs for image-to-video mode, same shape as x | |
| cond_flag (`bool`, *optional*, defaults to True): | |
| Flag to indicate whether to forward the condition input | |
| Returns: | |
| List[Tensor]: | |
| List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
| """ | |
| if self.model_type == 'i2v': | |
| assert clip_fea is not None and y is not None | |
| # params | |
| device = self.patch_embedding.weight.device | |
| dtype = x.dtype | |
| if self.freqs.device != device and torch.device(type="meta") != device: | |
| self.freqs = self.freqs.to(device) | |
| if y is not None: | |
| x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
| # embeddings | |
| x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
| grid_sizes = torch.stack([torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
| x = [u.flatten(2).transpose(1, 2) for u in x] | |
| seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
| if self.sp_world_size > 1: | |
| seq_len = int(math.ceil(seq_len / self.sp_world_size)) * self.sp_world_size | |
| assert seq_lens.max() <= seq_len | |
| x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x]) | |
| # time embeddings | |
| with amp.autocast(dtype=torch.float32): | |
| e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).float()) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| e0 = e0.to(dtype) | |
| e = e.to(dtype) | |
| # context | |
| context_lens = None | |
| context = self.text_embedding( | |
| torch.stack([ | |
| torch.cat( | |
| [u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
| for u in context | |
| ])) | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| # print("-----------------------------------------") | |
| # print(f"motion scale: {motion_scale}") # 0.2 | |
| # print(f"The size of face_masks: {face_masks.size()}") # [1, 81, 1, 512, 512] | |
| # print(f"The size of context: {context.size()}") # [1, 512, 5120] | |
| # print(f"The size of context_clip: {context_clip.size()}") # [1, 257, 5120] | |
| # print(f"The size of e: {e.size()}") # [1, 5120] | |
| # print(f"The size of e0: {e0.size()}") # [1, 6, 5120] | |
| # print(f"The size of vocal_context: {vocal_context.size()}") # [1, 21, 32, 5120] | |
| # print(f"The size of audio_context: {audio_context.size()}") # [1, 21, 32, 5120] | |
| # print("-----------------------------------------") | |
| context = torch.concat([context_clip, context], dim=1) | |
| vocal_context, vocal_context_lens = self.vocal_projector(vocal_embeddings=vocal_embeddings, video_sample_n_frames=81, latents=x, e0=e0, e=e) | |
| if is_clip_level_modeling: | |
| vocal_context = rearrange(vocal_context, "b f n c -> b (f n) c", f=21) | |
| print("You are in the clip-level audio modeling") | |
| # Context Parallel | |
| if self.sp_world_size > 1: | |
| x = torch.chunk(x, self.sp_world_size, dim=1)[self.sp_world_rank] | |
| # TeaCache | |
| if self.teacache is not None: | |
| if cond_flag: | |
| modulated_inp = e0 | |
| skip_flag = self.teacache.cnt < self.teacache.num_skip_start_steps | |
| if self.teacache.cnt == 0 or self.teacache.cnt == self.teacache.num_steps - 1 or skip_flag: | |
| should_calc = True | |
| self.teacache.accumulated_rel_l1_distance = 0 | |
| else: | |
| if cond_flag: | |
| rel_l1_distance = self.teacache.compute_rel_l1_distance(self.teacache.previous_modulated_input, | |
| modulated_inp) | |
| self.teacache.accumulated_rel_l1_distance += self.teacache.rescale_func(rel_l1_distance) | |
| if self.teacache.accumulated_rel_l1_distance < self.teacache.rel_l1_thresh: | |
| should_calc = False | |
| else: | |
| should_calc = True | |
| self.teacache.accumulated_rel_l1_distance = 0 | |
| self.teacache.previous_modulated_input = modulated_inp | |
| self.teacache.cnt += 1 | |
| if self.teacache.cnt == self.teacache.num_steps: | |
| self.teacache.reset() | |
| self.teacache.should_calc = should_calc | |
| else: | |
| should_calc = self.teacache.should_calc | |
| # TeaCache | |
| if self.teacache is not None: | |
| if not should_calc: | |
| previous_residual = self.teacache.previous_residual_cond if cond_flag else self.teacache.previous_residual_uncond | |
| x = x + previous_residual.to(x.device) | |
| else: | |
| ori_x = x.clone().cpu() if self.teacache.offload else x.clone() | |
| for block in self.blocks: | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", | |
| "1.11.0") else {} | |
| x = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| x, | |
| e0, | |
| seq_lens, | |
| grid_sizes, | |
| self.freqs, | |
| context, | |
| context_lens, | |
| dtype, | |
| vocal_context, | |
| vocal_context_lens, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| # arguments | |
| kwargs = dict( | |
| e=e0, | |
| seq_lens=seq_lens, | |
| grid_sizes=grid_sizes, | |
| freqs=self.freqs, | |
| context=context, | |
| context_lens=context_lens, | |
| dtype=dtype, | |
| vocal_context=vocal_context, | |
| vocal_context_lens=vocal_context_lens, | |
| ) | |
| x = block(x, **kwargs) | |
| if cond_flag: | |
| self.teacache.previous_residual_cond = x.cpu() - ori_x if self.teacache.offload else x - ori_x | |
| else: | |
| self.teacache.previous_residual_uncond = x.cpu() - ori_x if self.teacache.offload else x - ori_x | |
| else: | |
| for block in self.blocks: | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| x = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| x, | |
| e0, | |
| seq_lens, | |
| grid_sizes, | |
| self.freqs, | |
| context, | |
| context_lens, | |
| dtype, | |
| vocal_context, | |
| vocal_context_lens, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| # arguments | |
| kwargs = dict( | |
| e=e0, | |
| seq_lens=seq_lens, | |
| grid_sizes=grid_sizes, | |
| freqs=self.freqs, | |
| context=context, | |
| context_lens=context_lens, | |
| dtype=dtype, | |
| vocal_context=vocal_context, | |
| vocal_context_lens=vocal_context_lens, | |
| ) | |
| x = block(x, **kwargs) | |
| if self.sp_world_size > 1: | |
| x = get_sp_group().all_gather(x, dim=1) | |
| # head | |
| x = self.head(x, e) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| x = torch.stack(x) | |
| return x | |
| def unpatchify(self, x, grid_sizes): | |
| r""" | |
| Reconstruct video tensors from patch embeddings. | |
| Args: | |
| x (List[Tensor]): | |
| List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
| grid_sizes (Tensor): | |
| Original spatial-temporal grid dimensions before patching, | |
| shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
| Returns: | |
| List[Tensor]: | |
| Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
| """ | |
| c = self.out_dim | |
| out = [] | |
| for u, v in zip(x, grid_sizes.tolist()): | |
| u = u[:math.prod(v)].view(*v, *self.patch_size, c) | |
| u = torch.einsum('fhwpqrc->cfphqwr', u) | |
| u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) | |
| out.append(u) | |
| return out | |
| def init_weights(self): | |
| r""" | |
| Initialize model parameters using Xavier initialization. | |
| """ | |
| # basic init | |
| for m in self.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight) | |
| if m.bias is not None: | |
| nn.init.zeros_(m.bias) | |
| # init embeddings | |
| nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
| for m in self.text_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| for m in self.time_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| # init output layer | |
| nn.init.zeros_(self.head.head.weight) | |
| def from_pretrained( | |
| cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}, | |
| low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 | |
| ): | |
| if subfolder is not None: | |
| pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
| print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
| config_file = os.path.join(pretrained_model_path, 'config.json') | |
| if not os.path.isfile(config_file): | |
| raise RuntimeError(f"{config_file} does not exist") | |
| with open(config_file, "r") as f: | |
| config = json.load(f) | |
| from diffusers.utils import WEIGHTS_NAME | |
| model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
| model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
| if "dict_mapping" in transformer_additional_kwargs.keys(): | |
| for key in transformer_additional_kwargs["dict_mapping"]: | |
| transformer_additional_kwargs[transformer_additional_kwargs["dict_mapping"][key]] = config[key] | |
| # {'patch_size', 'qk_norm', 'window_size', 'cross_attn_norm', 'text_dim'} was not found in config. Values will be initialized to default values. | |
| transformer_additional_kwargs["patch_size"] = (1, 2, 2) | |
| transformer_additional_kwargs["qk_norm"] = True | |
| transformer_additional_kwargs["window_size"] = (-1, -1) | |
| transformer_additional_kwargs["cross_attn_norm"] = True | |
| if low_cpu_mem_usage: | |
| try: | |
| import re | |
| from diffusers.models.modeling_utils import \ | |
| load_model_dict_into_meta | |
| from diffusers.utils import is_accelerate_available | |
| if is_accelerate_available(): | |
| import accelerate | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| param_device = "cpu" | |
| if os.path.exists(model_file): | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| elif os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| from safetensors.torch import load_file, safe_open | |
| model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
| state_dict = {} | |
| print(model_files_safetensors) | |
| for _model_file_safetensors in model_files_safetensors: | |
| _state_dict = load_file(_model_file_safetensors) | |
| for key in _state_dict: | |
| state_dict[key] = _state_dict[key] | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| # move the params from meta device to cpu | |
| missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
| if len(missing_keys) > 0: | |
| raise ValueError( | |
| f"Cannot load {cls} from {pretrained_model_path} because the following keys are" | |
| f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
| " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
| " those weights or else make sure your checkpoint file is correct." | |
| ) | |
| unexpected_keys = load_model_dict_into_meta( | |
| model, | |
| state_dict, | |
| device=param_device, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_path, | |
| ) | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if len(unexpected_keys) > 0: | |
| print( | |
| f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
| ) | |
| return model | |
| except Exception as e: | |
| print( | |
| f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." | |
| ) | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| if os.path.exists(model_file): | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| elif os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| from safetensors.torch import load_file, safe_open | |
| model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
| state_dict = {} | |
| for _model_file_safetensors in model_files_safetensors: | |
| _state_dict = load_file(_model_file_safetensors) | |
| for key in _state_dict: | |
| state_dict[key] = _state_dict[key] | |
| if model.state_dict()['patch_embedding.weight'].size() != state_dict['patch_embedding.weight'].size(): | |
| model.state_dict()['patch_embedding.weight'][:, :state_dict['patch_embedding.weight'].size()[1], :, :] = \ | |
| state_dict['patch_embedding.weight'] | |
| model.state_dict()['patch_embedding.weight'][:, state_dict['patch_embedding.weight'].size()[1]:, :, :] = 0 | |
| state_dict['patch_embedding.weight'] = model.state_dict()['patch_embedding.weight'] | |
| tmp_state_dict = {} | |
| for key in state_dict: | |
| if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
| tmp_state_dict[key] = state_dict[key] | |
| else: | |
| print(key, "Size don't match, skip") | |
| state_dict = tmp_state_dict | |
| m, u = model.load_state_dict(state_dict, strict=False) | |
| print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| print(m) | |
| params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### All Parameters: {sum(params) / 1e6} M") | |
| model = model.to(torch_dtype) | |
| return model |