import torch import psutil import argparse import os from diffusers import FlowMatchEulerDiscreteScheduler from diffusers.utils import load_image from transformers import AutoTokenizer, Wav2Vec2Model, Wav2Vec2Processor from omegaconf import OmegaConf from wan.models.cache_utils import get_teacache_coefficients from wan.models.wan_fantasy_transformer3d_1B import WanTransformer3DFantasyModel from wan.models.wan_text_encoder import WanT5EncoderModel from wan.models.wan_vae import AutoencoderKLWan from wan.models.wan_image_encoder import CLIPModel from wan.pipeline.wan_inference_long_pipeline import WanI2VTalkingInferenceLongPipeline from wan.utils.fp8_optimization import replace_parameters_by_name, convert_weight_dtype_wrapper, convert_model_weight_to_float8 from wan.utils.utils import get_image_to_video_latent, save_videos_grid import numpy as np import librosa import datetime import random import math import subprocess from moviepy.editor import VideoFileClip from huggingface_hub import snapshot_download import shutil import requests import uuid # Device and dtype setup if torch.cuda.is_available(): device = "cuda" if torch.cuda.get_device_capability()[0] >= 8: dtype = torch.bfloat16 else: dtype = torch.float16 else: device = "cpu" dtype = torch.float32 def filter_kwargs(cls, kwargs): import inspect sig = inspect.signature(cls.__init__) valid_params = set(sig.parameters.keys()) - {'self', 'cls'} filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params} return filtered_kwargs def load_transformer_model(model_version, repo_root): transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", f"transformer3d-{model_version}.pt") print(f"Loading model: {transformer_path}") if os.path.exists(transformer_path): state_dict = torch.load(transformer_path, map_location="cpu") state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict m, u = transformer3d.load_state_dict(state_dict, strict=False) print(f"Model loaded successfully: {transformer_path}") print(f"Missing keys: {len(m)}; Unexpected keys: {len(u)}") return transformer3d else: print(f"Error: Model file does not exist: {transformer_path}") return None def download_file(url, local_path): """Download file from URL to local path""" try: response = requests.get(url, stream=True) response.raise_for_status() with open(local_path, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) return local_path except Exception as e: print(f"Error downloading file from {url}: {e}") return None def prepare_input_file(input_path, file_type="image"): """Handle local or remote file inputs""" if input_path.startswith("http://") or input_path.startswith("https://"): ext = ".png" if file_type == "image" else ".wav" local_path = os.path.join("temp", f"{uuid.uuid4()}{ext}") os.makedirs("temp", exist_ok=True) return download_file(input_path, local_path) elif os.path.exists(input_path): return input_path else: print(f"Error: {file_type.capitalize()} file {input_path} does not exist") return None # Initialize model paths REPO_ID = "FrancisRing/StableAvatar" repo_root = snapshot_download( repo_id=REPO_ID, allow_patterns=[ "StableAvatar-1.3B/*", "Wan2.1-Fun-V1.1-1.3B-InP/*", "wav2vec2-base-960h/*", "assets/**", "Kim_Vocal_2.onnx", ], ) pretrained_model_name_or_path = os.path.join(repo_root, "Wan2.1-Fun-V1.1-1.3B-InP") pretrained_wav2vec_path = os.path.join(repo_root, "wav2vec2-base-960h") audio_separator_model_file = os.path.join(repo_root, "Kim_Vocal_2.onnx") # Load configuration and models config = OmegaConf.load("deepspeed_config/wan2.1/wan_civitai.yaml") sampler_name = "Flow" clip_sample_n_frames = 81 tokenizer = AutoTokenizer.from_pretrained( os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')) ) text_encoder = WanT5EncoderModel.from_pretrained( os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')), additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']), low_cpu_mem_usage=True, torch_dtype=dtype, ).eval() vae = AutoencoderKLWan.from_pretrained( os.path.join(pretrained_model_name_or_path, config['vae_kwargs'].get('vae_subpath', 'vae')), additional_kwargs=OmegaConf.to_container(config['vae_kwargs']), ) wav2vec_processor = Wav2Vec2Processor.from_pretrained(pretrained_wav2vec_path) wav2vec = Wav2Vec2Model.from_pretrained(pretrained_wav2vec_path).to("cpu") clip_image_encoder = CLIPModel.from_pretrained( os.path.join(pretrained_model_name_or_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')) ).eval() transformer3d = WanTransformer3DFantasyModel.from_pretrained( os.path.join(pretrained_model_name_or_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')), transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']), low_cpu_mem_usage=False, torch_dtype=dtype, ) # Load default transformer model load_transformer_model("square", repo_root) # Initialize scheduler and pipeline scheduler_dict = {"Flow": FlowMatchEulerDiscreteScheduler} Choosen_Scheduler = scheduler_dict[sampler_name] scheduler = Choosen_Scheduler( **filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(config['scheduler_kwargs'])) ) pipeline = WanI2VTalkingInferenceLongPipeline( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer3d, clip_image_encoder=clip_image_encoder, scheduler=scheduler, wav2vec_processor=wav2vec_processor, wav2vec=wav2vec, ) def generate( GPU_memory_mode="model_cpu_offload", teacache_threshold=0, num_skip_start_steps=5, image_path=None, audio_path=None, prompt="", negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走", width=512, height=512, guidance_scale=6.0, num_inference_steps=50, text_guide_scale=3.0, audio_guide_scale=5.0, motion_frame=25, fps=25, overlap_window_length=10, seed_param=42, overlapping_weight_scheme="uniform" ): global pipeline, transformer3d timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") if seed_param < 0: seed = random.randint(0, np.iinfo(np.int32).max) else: seed = seed_param # Handle input files image_path = prepare_input_file(image_path, "image") audio_path = prepare_input_file(audio_path, "audio") if not image_path or not audio_path: return None, None, "Error: Invalid input file paths" # Configure pipeline based on GPU memory mode if GPU_memory_mode == "sequential_cpu_offload": replace_parameters_by_name(transformer3d, ["modulation"], device=device) transformer3d.freqs = transformer3d.freqs.to(device=device) pipeline.enable_sequential_cpu_offload(device=device) elif GPU_memory_mode == "model_cpu_offload_and_qfloat8": convert_model_weight_to_float8(transformer3d, exclude_module_name=["modulation"]) convert_weight_dtype_wrapper(transformer3d, dtype) pipeline.enable_model_cpu_offload(device=device) elif GPU_memory_mode == "model_cpu_offload": pipeline.enable_model_cpu_offload(device=device) else: pipeline.to(device=device) # Enable TeaCache if specified if teacache_threshold > 0: coefficients = get_teacache_coefficients(pretrained_model_name_or_path) pipeline.transformer.enable_teacache( coefficients, num_inference_steps, teacache_threshold, num_skip_start_steps=num_skip_start_steps, ) # Perform inference with torch.no_grad(): video_length = int((clip_sample_n_frames - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if clip_sample_n_frames != 1 else 1 input_video, input_video_mask, clip_image = get_image_to_video_latent(image_path, None, video_length=video_length, sample_size=[height, width]) sr = 16000 vocal_input, sample_rate = librosa.load(audio_path, sr=sr) sample = pipeline( prompt, num_frames=video_length, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed), num_inference_steps=num_inference_steps, video=input_video, mask_video=input_video_mask, clip_image=clip_image, text_guide_scale=text_guide_scale, audio_guide_scale=audio_guide_scale, vocal_input_values=vocal_input, motion_frame=motion_frame, fps=fps, sr=sr, cond_file_path=image_path, overlap_window_length=overlap_window_length, seed=seed, overlapping_weight_scheme=overlapping_weight_scheme, ).videos os.makedirs("outputs", exist_ok=True) video_path = os.path.join("outputs", f"{timestamp}.mp4") save_videos_grid(sample, video_path, fps=fps) output_video_with_audio = os.path.join("outputs", f"{timestamp}_audio.mp4") subprocess.run([ "ffmpeg", "-y", "-loglevel", "quiet", "-i", video_path, "-i", audio_path, "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", output_video_with_audio ], check=True) return output_video_with_audio, seed, f"Generated outputs/{timestamp}.mp4" def main(): parser = argparse.ArgumentParser(description="StableAvatar Inference Script") parser.add_argument("--prompt", type=str, default="", help="Text prompt for generation") parser.add_argument("--seed", type=int, default=42, help="Random seed, -1 for random") parser.add_argument("--input_image", type=str, required=True, help="Path or URL to input image (e.g., ./image.png or https://example.com/image.png)") parser.add_argument("--input_audio", type=str, required=True, help="Path or URL to input audio (e.g., ./audio.wav or https://example.com/audio.wav)") parser.add_argument("--GPU_memory_mode", type=str, default="model_cpu_offload", choices=["Normal", "model_cpu_offload", "model_cpu_offload_and_qfloat8", "sequential_cpu_offload"], help="GPU memory mode") parser.add_argument("--teacache_threshold", type=float, default=0, help="TeaCache threshold, 0 to disable") parser.add_argument("--num_skip_start_steps", type=int, default=5, help="Number of start steps to skip") parser.add_argument("--negative_prompt", type=str, default="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走", help="Negative prompt") parser.add_argument("--width", type=int, default=512, help="Output video width") parser.add_argument("--height", type=int, default=512, help="Output video height") parser.add_argument("--guidance_scale", type=float, default=6.0, help="Guidance scale") parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps") parser.add_argument("--text_guide_scale", type=float, default=3.0, help="Text guidance scale") parser.add_argument("--audio_guide_scale", type=float, default=5.0, help="Audio guidance scale") parser.add_argument("--motion_frame", type=int, default=25, help="Motion frame") parser.add_argument("--fps", type=int, default=25, help="Frames per second") parser.add_argument("--overlap_window_length", type=int, default=10, help="Overlap window length") parser.add_argument("--overlapping_weight_scheme", type=str, default="uniform", choices=["uniform", "log"], help="Overlapping weight scheme") args = parser.parse_args() video_path, seed, message = generate( GPU_memory_mode=args.GPU_memory_mode, teacache_threshold=args.teacache_threshold, num_skip_start_steps=args.num_skip_start_steps, image_path=args.input_image, audio_path=args.input_audio, prompt=args.prompt, negative_prompt=args.negative_prompt, width=args.width, height=args.height, guidance_scale=args.guidance_scale, num_inference_steps=args.num_inference_steps, text_guide_scale=args.text_guide_scale, audio_guide_scale=args.audio_guide_scale, motion_frame=args.motion_frame, fps=args.fps, overlap_window_length=args.overlap_window_length, seed_param=args.seed, overlapping_weight_scheme=args.overlapping_weight_scheme ) if video_path: print(f"{message}\nSeed: {seed}") else: print("Generation failed.") if __name__ == "__main__": main()