Spaces:
Sleeping
Sleeping
| import base64 | |
| import json | |
| import mimetypes | |
| import os | |
| import uuid | |
| from io import BytesIO | |
| from typing import Optional | |
| import requests | |
| from dotenv import load_dotenv | |
| from PIL import Image | |
| from smolagents import Tool, tool | |
| load_dotenv(override=True) | |
| def encode_image(image_path): | |
| if image_path.startswith("http"): | |
| user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" | |
| request_kwargs = { | |
| "headers": {"User-Agent": user_agent}, | |
| "stream": True, | |
| } | |
| # Send a HTTP request to the URL | |
| response = requests.get(image_path, **request_kwargs) | |
| response.raise_for_status() | |
| content_type = response.headers.get("content-type", "") | |
| extension = mimetypes.guess_extension(content_type) | |
| if extension is None: | |
| extension = ".download" | |
| fname = str(uuid.uuid4()) + extension | |
| download_path = os.path.abspath(os.path.join("downloads", fname)) | |
| with open(download_path, "wb") as fh: | |
| for chunk in response.iter_content(chunk_size=512): | |
| fh.write(chunk) | |
| image_path = download_path | |
| with open(image_path, "rb") as image_file: | |
| return base64.b64encode(image_file.read()).decode("utf-8") | |
| def resize_image(image_path): | |
| img = Image.open(image_path) | |
| width, height = img.size | |
| img = img.resize((int(width / 2), int(height / 2))) | |
| new_image_path = f"resized_{image_path}" | |
| img.save(new_image_path) | |
| return new_image_path | |
| def visualizer(image_path: str, question: Optional[str] = None) -> str: | |
| """A tool that can answer questions about attached images. | |
| Args: | |
| image_path: The path to the image on which to answer the question. This should be a local path to downloaded image. | |
| question: The question to answer. | |
| """ | |
| if not isinstance(image_path, str): | |
| raise Exception("You should provide at least `image_path` string argument to this tool!") | |
| add_note = False | |
| if not question: | |
| add_note = True | |
| question = "Please write a detailed caption for this image." | |
| mime_type, _ = mimetypes.guess_type(image_path) | |
| base64_image = encode_image(image_path) | |
| # Configuración para Ollama | |
| model_id = os.getenv("MODEL_ID", "qwen2.5-coder:3b") | |
| api_base = os.getenv("OPENAI_API_BASE", "http://localhost:11434/v1") | |
| api_key = os.getenv("OPENAI_API_KEY", "ollama") | |
| headers = { | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {api_key}" | |
| } | |
| payload = { | |
| "model": model_id, | |
| "messages": [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": question}, | |
| {"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{base64_image}"}}, | |
| ], | |
| } | |
| ], | |
| "max_tokens": 1000, | |
| } | |
| try: | |
| response = requests.post(f"{api_base}/chat/completions", headers=headers, json=payload) | |
| response.raise_for_status() | |
| output = response.json()["choices"][0]["message"]["content"] | |
| except Exception as e: | |
| print(f"Error processing image: {str(e)}") | |
| if "Payload Too Large" in str(e): | |
| new_image_path = resize_image(image_path) | |
| base64_image = encode_image(new_image_path) | |
| payload["messages"][0]["content"][1]["image_url"]["url"] = f"data:{mime_type};base64,{base64_image}" | |
| response = requests.post(f"{api_base}/chat/completions", headers=headers, json=payload) | |
| response.raise_for_status() | |
| output = response.json()["choices"][0]["message"]["content"] | |
| else: | |
| raise Exception(f"Error processing image: {str(e)}") | |
| if add_note: | |
| output = f"You did not provide a particular question, so here is a detailed caption for the image: {output}" | |
| return output | |