Spaces:
Runtime error
Runtime error
| import torch | |
| import requests | |
| from PIL import Image | |
| from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
| import rembg | |
| # Load the pipeline | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline", | |
| torch_dtype=torch.float16 | |
| ) | |
| # Feel free to tune the scheduler! | |
| # `timestep_spacing` parameter is not supported in older versions of `diffusers` | |
| # so there may be performance degradations | |
| # We recommend using `diffusers==0.20.2` | |
| pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
| pipeline.scheduler.config, timestep_spacing='trailing' | |
| ) | |
| pipeline.to('cuda:0') | |
| def inference(input_img, num_inference_steps, guidance_scale, seed ): | |
| # Download an example image. | |
| cond = Image.open(input_img) | |
| # Run the pipeline! | |
| #result = pipeline(cond, num_inference_steps=75).images[0] | |
| result = pipeline(cond, num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| generator=torch.Generator(pipeline.device).manual_seed(seed)).images[0] | |
| # for general real and synthetic images of general objects | |
| # usually it is enough to have around 28 inference steps | |
| # for images with delicate details like faces (real or anime) | |
| # you may need 75-100 steps for the details to construct | |
| #result.show() | |
| #result.save("output.png") | |
| return result | |
| def remove_background(result): | |
| result = rembg.remove(result) | |
| return result | |
| import gradio as gr | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1><center> Zero123++ Demo</center></h1>") | |
| with gr.Column(): | |
| input_img = gr.Image(label='Input Image', tyoe='filepath') | |
| with gr.Column(): | |
| output_img = gr.Image(label='Zero123++ Output') | |
| with gr.Accordion("Advanced options:", open=False): | |
| rm_in_bkg = gr.Checkbox(label='Remove Input Background', ) | |
| rm_out_bkg = gr.Checkbox(label='Remove Output Background') | |
| num_inference_steps = gr.Slider(label="Number of Inference Steps",minimum=15, maximum=100, step=1, value=75, interactive=True) | |
| guidance_scale = gr.Slider(label="Classifier Free Guidance Scale",minimum=1.00, maximum=10.00, step=0.1, value=4.0, interactive=True) | |
| seed = gr.Number(0, label='Seed') | |
| btn = gr.Button('Submit') | |
| btn.click(inference, [input_img, num_inference_steps, guidance_scale, seed ], output_img) | |
| rm_in_bkg.input(remove_background, input_img, output_img) | |
| rm_out_bkg.input(remove_background, output_img, output_img) | |
| gr.Examples( | |
| examples=[["one.jpg"],['two.jpg'], ['three.jpg']], | |
| inputs=input_img, | |
| outputs=output_img, | |
| fn=dummy, | |
| cache_examples=True, | |
| ) | |
| demo.launch() | |