Spaces:
Runtime error
Runtime error
Try to fix plot
Browse files
app.py
CHANGED
|
@@ -37,6 +37,7 @@ DATASETS_TOPICS_ORGANIZATION = os.getenv(
|
|
| 37 |
"DATASETS_TOPICS_ORGANIZATION", "datasets-topics"
|
| 38 |
)
|
| 39 |
USE_CUML = int(os.getenv("USE_CUML", "1"))
|
|
|
|
| 40 |
|
| 41 |
# Use cuml lib only if configured
|
| 42 |
if USE_CUML:
|
|
@@ -52,17 +53,19 @@ logging.basicConfig(
|
|
| 52 |
)
|
| 53 |
|
| 54 |
api = HfApi(token=HF_TOKEN)
|
|
|
|
| 55 |
|
|
|
|
| 56 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 57 |
-
|
| 58 |
-
vectorizer_model = CountVectorizer(stop_words="english")
|
| 59 |
representation_model = KeyBERTInspired()
|
|
|
|
| 60 |
|
| 61 |
inference_client = InferenceClient(model_id)
|
| 62 |
|
| 63 |
|
| 64 |
def calculate_embeddings(docs):
|
| 65 |
-
return
|
| 66 |
|
| 67 |
|
| 68 |
def calculate_n_neighbors_and_components(n_rows):
|
|
@@ -92,7 +95,7 @@ def fit_model(docs, embeddings, n_neighbors, n_components):
|
|
| 92 |
new_model = BERTopic(
|
| 93 |
language="english",
|
| 94 |
# Sub-models
|
| 95 |
-
embedding_model=
|
| 96 |
umap_model=umap_model, # Step 2 - UMAP model
|
| 97 |
hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings
|
| 98 |
vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics
|
|
@@ -166,146 +169,44 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
| 166 |
"",
|
| 167 |
)
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
f"The following topics are newly found: {base_model.topic_labels_}"
|
| 183 |
-
)
|
| 184 |
-
else:
|
| 185 |
-
updated_model = BERTopic.merge_models([base_model, new_model])
|
| 186 |
-
nr_new_topics = len(set(updated_model.topics_)) - len(
|
| 187 |
-
set(base_model.topics_)
|
| 188 |
-
)
|
| 189 |
-
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
| 190 |
-
logging.info(f"The following topics are newly found: {new_topics}")
|
| 191 |
-
base_model = updated_model
|
| 192 |
-
|
| 193 |
-
logging.info("Reducing embeddings to 2D")
|
| 194 |
-
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
|
| 195 |
-
reduced_embeddings_list.append(reduced_embeddings)
|
| 196 |
-
|
| 197 |
-
all_docs.extend(docs)
|
| 198 |
-
reduced_embeddings_array = np.vstack(reduced_embeddings_list)
|
| 199 |
-
logging.info("Reducing embeddings to 2D ✓")
|
| 200 |
-
|
| 201 |
-
topics_info = base_model.get_topic_info()
|
| 202 |
-
all_topics = base_model.topics_
|
| 203 |
-
logging.info(f"Preparing topics {plot_type} plot")
|
| 204 |
-
|
| 205 |
-
topic_plot = (
|
| 206 |
-
base_model.visualize_document_datamap(
|
| 207 |
-
docs=all_docs,
|
| 208 |
-
topics=all_topics,
|
| 209 |
-
reduced_embeddings=reduced_embeddings_array,
|
| 210 |
-
title="",
|
| 211 |
-
sub_title=sub_title,
|
| 212 |
-
width=800,
|
| 213 |
-
height=700,
|
| 214 |
-
arrowprops={
|
| 215 |
-
"arrowstyle": "wedge,tail_width=0.5",
|
| 216 |
-
"connectionstyle": "arc3,rad=0.05",
|
| 217 |
-
"linewidth": 0,
|
| 218 |
-
"fc": "#33333377",
|
| 219 |
-
},
|
| 220 |
-
dynamic_label_size=True,
|
| 221 |
-
# label_wrap_width=12,
|
| 222 |
-
label_over_points=True,
|
| 223 |
-
max_font_size=36,
|
| 224 |
-
min_font_size=4,
|
| 225 |
-
)
|
| 226 |
-
if plot_type == "DataMapPlot"
|
| 227 |
-
else base_model.visualize_documents(
|
| 228 |
-
docs=all_docs,
|
| 229 |
-
topics=all_topics,
|
| 230 |
-
reduced_embeddings=reduced_embeddings_array,
|
| 231 |
-
custom_labels=True,
|
| 232 |
-
title="",
|
| 233 |
-
)
|
| 234 |
-
)
|
| 235 |
-
logging.info("Plot done ✓")
|
| 236 |
-
rows_processed += len(docs)
|
| 237 |
-
progress = min(rows_processed / limit, 1.0)
|
| 238 |
-
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
| 239 |
-
message = (
|
| 240 |
-
f"Processing topics for full dataset: {rows_processed} of {limit}"
|
| 241 |
-
if full_processing
|
| 242 |
-
else f"Processing topics for partial dataset: {rows_processed} of {limit} rows"
|
| 243 |
)
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
topic_plot,
|
| 249 |
-
gr.Label({"⏳ " + message: progress}, visible=True),
|
| 250 |
-
"",
|
| 251 |
)
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
yield (
|
| 258 |
-
gr.Accordion(open=False),
|
| 259 |
-
topics_info,
|
| 260 |
-
topic_plot,
|
| 261 |
-
gr.Label(
|
| 262 |
-
{
|
| 263 |
-
"✅ " + message: 1.0,
|
| 264 |
-
f"⏳ Generating topic names with {model_id}": 0.0,
|
| 265 |
-
},
|
| 266 |
-
visible=True,
|
| 267 |
-
),
|
| 268 |
-
"",
|
| 269 |
-
)
|
| 270 |
-
|
| 271 |
-
all_topics = base_model.topics_
|
| 272 |
-
topics_info = base_model.get_topic_info()
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
logging.info(
|
| 277 |
-
f"Processing topic: {row['Topic']} - Representation: {row['Representation']}"
|
| 278 |
-
)
|
| 279 |
-
prompt = f"{LLAMA_3_8B_PROMPT.replace('[KEYWORDS]', ','.join(row['Representation']))}"
|
| 280 |
-
prompt_messages = [
|
| 281 |
-
{
|
| 282 |
-
"role": "system",
|
| 283 |
-
"content": "You are a helpful, respectful and honest assistant for labeling topics.",
|
| 284 |
-
},
|
| 285 |
-
{"role": "user", "content": prompt},
|
| 286 |
-
]
|
| 287 |
-
output = inference_client.chat_completion(
|
| 288 |
-
messages=prompt_messages,
|
| 289 |
-
stream=False,
|
| 290 |
-
max_tokens=500,
|
| 291 |
-
top_p=0.8,
|
| 292 |
-
seed=42,
|
| 293 |
-
)
|
| 294 |
-
inference_response = output.choices[0].message.content
|
| 295 |
-
logging.info("Inference response:")
|
| 296 |
-
logging.info(inference_response)
|
| 297 |
-
new_topics_by_text_generation[row["Topic"]] = inference_response.replace(
|
| 298 |
-
"Topic=", ""
|
| 299 |
-
).strip()
|
| 300 |
-
base_model.set_topic_labels(new_topics_by_text_generation)
|
| 301 |
|
| 302 |
topics_info = base_model.get_topic_info()
|
| 303 |
-
|
|
|
|
| 304 |
topic_plot = (
|
| 305 |
base_model.visualize_document_datamap(
|
| 306 |
docs=all_docs,
|
| 307 |
topics=all_topics,
|
| 308 |
-
custom_labels=True,
|
| 309 |
reduced_embeddings=reduced_embeddings_array,
|
| 310 |
title="",
|
| 311 |
sub_title=sub_title,
|
|
@@ -326,100 +227,191 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
| 326 |
if plot_type == "DataMapPlot"
|
| 327 |
else base_model.visualize_documents(
|
| 328 |
docs=all_docs,
|
|
|
|
| 329 |
reduced_embeddings=reduced_embeddings_array,
|
| 330 |
-
custom_labels=True,
|
| 331 |
title="",
|
| 332 |
)
|
| 333 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
-
dataset_clear_name = dataset.replace("/", "-")
|
| 336 |
-
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
| 337 |
-
if plot_type == "DataMapPlot":
|
| 338 |
-
topic_plot.savefig(plot_png, format="png", dpi=300)
|
| 339 |
-
else:
|
| 340 |
-
topic_plot.write_image(plot_png)
|
| 341 |
-
|
| 342 |
-
custom_labels = base_model.custom_labels_
|
| 343 |
-
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
| 344 |
yield (
|
| 345 |
gr.Accordion(open=False),
|
| 346 |
topics_info,
|
| 347 |
topic_plot,
|
| 348 |
-
gr.Label(
|
| 349 |
-
{
|
| 350 |
-
"✅ " + message: 1.0,
|
| 351 |
-
f"✅ Generating topic names with {model_id}": 1.0,
|
| 352 |
-
"⏳ Creating Interactive Space": 0.0,
|
| 353 |
-
},
|
| 354 |
-
visible=True,
|
| 355 |
-
),
|
| 356 |
"",
|
| 357 |
)
|
| 358 |
-
interactive_plot = datamapplot.create_interactive_plot(
|
| 359 |
-
reduced_embeddings_array,
|
| 360 |
-
topic_names_array,
|
| 361 |
-
hover_text=all_docs,
|
| 362 |
-
title=dataset,
|
| 363 |
-
sub_title=sub_title.replace(
|
| 364 |
-
"dataset",
|
| 365 |
-
f"<a href='https://huggingface.co/datasets/{dataset}/viewer/{config}/{split}' target='_blank'>dataset</a>",
|
| 366 |
-
),
|
| 367 |
-
enable_search=True,
|
| 368 |
-
# TODO: Export data to .arrow and also serve it
|
| 369 |
-
inline_data=True,
|
| 370 |
-
# offline_data_prefix=dataset_clear_name,
|
| 371 |
-
initial_zoom_fraction=0.8,
|
| 372 |
-
)
|
| 373 |
-
html_content = str(interactive_plot)
|
| 374 |
-
html_file_path = f"{dataset_clear_name}.html"
|
| 375 |
-
with open(html_file_path, "w", encoding="utf-8") as html_file:
|
| 376 |
-
html_file.write(html_content)
|
| 377 |
-
|
| 378 |
-
repo_id = f"{DATASETS_TOPICS_ORGANIZATION}/{dataset_clear_name}"
|
| 379 |
-
|
| 380 |
-
space_id = create_space_with_content(
|
| 381 |
-
api=api,
|
| 382 |
-
repo_id=repo_id,
|
| 383 |
-
dataset_id=dataset,
|
| 384 |
-
html_file_path=html_file_path,
|
| 385 |
-
plot_file_path=plot_png,
|
| 386 |
-
space_card=SPACE_REPO_CARD_CONTENT,
|
| 387 |
-
token=HF_TOKEN,
|
| 388 |
-
)
|
| 389 |
|
| 390 |
-
|
|
|
|
|
|
|
| 391 |
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
)
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
)
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
|
| 424 |
|
| 425 |
with gr.Blocks() as demo:
|
|
@@ -468,11 +460,11 @@ with gr.Blocks() as demo:
|
|
| 468 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
| 469 |
|
| 470 |
gr.Markdown("## Data map")
|
| 471 |
-
|
| 472 |
open_space_label = gr.Markdown()
|
| 473 |
topics_plot = gr.Plot()
|
| 474 |
-
|
| 475 |
-
|
| 476 |
gr.HTML(
|
| 477 |
f"<p style='text-align: center; color:orange;'>⚠ This space processes datasets in batches of <b>{CHUNK_SIZE}</b>, with a maximum of <b>{MAX_ROWS}</b> rows. If you need further assistance, please open a new issue in the Community tab.</p>"
|
| 478 |
)
|
|
@@ -494,7 +486,7 @@ with gr.Blocks() as demo:
|
|
| 494 |
data_details_accordion,
|
| 495 |
topics_df,
|
| 496 |
topics_plot,
|
| 497 |
-
|
| 498 |
open_space_label,
|
| 499 |
],
|
| 500 |
)
|
|
|
|
| 37 |
"DATASETS_TOPICS_ORGANIZATION", "datasets-topics"
|
| 38 |
)
|
| 39 |
USE_CUML = int(os.getenv("USE_CUML", "1"))
|
| 40 |
+
USE_LLM_TEXT_GENERATION = int(os.getenv("USE_LLM_TEXT_GENERATION", "1"))
|
| 41 |
|
| 42 |
# Use cuml lib only if configured
|
| 43 |
if USE_CUML:
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
api = HfApi(token=HF_TOKEN)
|
| 56 |
+
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 57 |
|
| 58 |
+
# Representation model
|
| 59 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 60 |
+
|
|
|
|
| 61 |
representation_model = KeyBERTInspired()
|
| 62 |
+
vectorizer_model = CountVectorizer(stop_words="english")
|
| 63 |
|
| 64 |
inference_client = InferenceClient(model_id)
|
| 65 |
|
| 66 |
|
| 67 |
def calculate_embeddings(docs):
|
| 68 |
+
return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
|
| 69 |
|
| 70 |
|
| 71 |
def calculate_n_neighbors_and_components(n_rows):
|
|
|
|
| 95 |
new_model = BERTopic(
|
| 96 |
language="english",
|
| 97 |
# Sub-models
|
| 98 |
+
embedding_model=sentence_model, # Step 1 - Extract embeddings
|
| 99 |
umap_model=umap_model, # Step 2 - UMAP model
|
| 100 |
hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings
|
| 101 |
vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics
|
|
|
|
| 169 |
"",
|
| 170 |
)
|
| 171 |
|
| 172 |
+
while offset < limit:
|
| 173 |
+
logging.info(f"----> Getting records from {offset=} with {CHUNK_SIZE=}")
|
| 174 |
+
docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
|
| 175 |
+
if not docs:
|
| 176 |
+
break
|
| 177 |
+
logging.info(f"Got {len(docs)} docs ✓")
|
| 178 |
+
embeddings = calculate_embeddings(docs)
|
| 179 |
+
new_model = fit_model(docs, embeddings, n_neighbors, n_components)
|
| 180 |
+
|
| 181 |
+
if base_model is None:
|
| 182 |
+
base_model = new_model
|
| 183 |
+
logging.info(
|
| 184 |
+
f"The following topics are newly found: {base_model.topic_labels_}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
)
|
| 186 |
+
else:
|
| 187 |
+
updated_model = BERTopic.merge_models([base_model, new_model])
|
| 188 |
+
nr_new_topics = len(set(updated_model.topics_)) - len(
|
| 189 |
+
set(base_model.topics_)
|
|
|
|
|
|
|
|
|
|
| 190 |
)
|
| 191 |
+
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
| 192 |
+
logging.info(f"The following topics are newly found: {new_topics}")
|
| 193 |
+
base_model = updated_model
|
| 194 |
|
| 195 |
+
logging.info("Reducing embeddings to 2D")
|
| 196 |
+
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
|
| 197 |
+
reduced_embeddings_list.append(reduced_embeddings)
|
| 198 |
+
logging.info("Reducing embeddings to 2D ✓")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
+
all_docs.extend(docs)
|
| 201 |
+
reduced_embeddings_array = np.vstack(reduced_embeddings_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
topics_info = base_model.get_topic_info()
|
| 204 |
+
all_topics = base_model.topics_
|
| 205 |
+
logging.info(f"Preparing topics {plot_type} plot")
|
| 206 |
topic_plot = (
|
| 207 |
base_model.visualize_document_datamap(
|
| 208 |
docs=all_docs,
|
| 209 |
topics=all_topics,
|
|
|
|
| 210 |
reduced_embeddings=reduced_embeddings_array,
|
| 211 |
title="",
|
| 212 |
sub_title=sub_title,
|
|
|
|
| 227 |
if plot_type == "DataMapPlot"
|
| 228 |
else base_model.visualize_documents(
|
| 229 |
docs=all_docs,
|
| 230 |
+
topics=all_topics,
|
| 231 |
reduced_embeddings=reduced_embeddings_array,
|
|
|
|
| 232 |
title="",
|
| 233 |
)
|
| 234 |
)
|
| 235 |
+
logging.info("Plot done ✓")
|
| 236 |
+
rows_processed += len(docs)
|
| 237 |
+
progress = min(rows_processed / limit, 1.0)
|
| 238 |
+
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
| 239 |
+
message = (
|
| 240 |
+
f"Processing topics for full dataset: {rows_processed} of {limit}"
|
| 241 |
+
if full_processing
|
| 242 |
+
else f"Processing topics for partial dataset: {rows_processed} of {limit} rows"
|
| 243 |
+
)
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
yield (
|
| 246 |
gr.Accordion(open=False),
|
| 247 |
topics_info,
|
| 248 |
topic_plot,
|
| 249 |
+
gr.Label({"⏳ " + message: progress}, visible=True),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
"",
|
| 251 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
+
offset += CHUNK_SIZE
|
| 254 |
+
del docs, embeddings, new_model, reduced_embeddings
|
| 255 |
+
logging.info("Finished processing all data")
|
| 256 |
|
| 257 |
+
yield (
|
| 258 |
+
gr.Accordion(open=False),
|
| 259 |
+
topics_info,
|
| 260 |
+
topic_plot,
|
| 261 |
+
gr.Label(
|
| 262 |
+
{
|
| 263 |
+
"✅ " + message: 1.0,
|
| 264 |
+
f"⏳ Generating topic names with {model_id}": 0.0,
|
| 265 |
+
},
|
| 266 |
+
visible=True,
|
| 267 |
+
),
|
| 268 |
+
"",
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
all_topics = base_model.topics_
|
| 272 |
+
topics_info = base_model.get_topic_info()
|
| 273 |
+
|
| 274 |
+
new_topics_by_text_generation = {}
|
| 275 |
+
for _, row in topics_info.iterrows():
|
| 276 |
+
logging.info(
|
| 277 |
+
f"Processing topic: {row['Topic']} - Representation: {row['Representation']}"
|
| 278 |
)
|
| 279 |
+
prompt = f"{LLAMA_3_8B_PROMPT.replace('[KEYWORDS]', ','.join(row['Representation']))}"
|
| 280 |
+
prompt_messages = [
|
| 281 |
+
{
|
| 282 |
+
"role": "system",
|
| 283 |
+
"content": "You are a helpful, respectful and honest assistant for labeling topics.",
|
| 284 |
+
},
|
| 285 |
+
{"role": "user", "content": prompt},
|
| 286 |
+
]
|
| 287 |
+
output = inference_client.chat_completion(
|
| 288 |
+
messages=prompt_messages,
|
| 289 |
+
stream=False,
|
| 290 |
+
max_tokens=500,
|
| 291 |
+
top_p=0.8,
|
| 292 |
+
seed=42,
|
| 293 |
)
|
| 294 |
+
inference_response = output.choices[0].message.content
|
| 295 |
+
logging.info("Inference response:")
|
| 296 |
+
logging.info(inference_response)
|
| 297 |
+
new_topics_by_text_generation[row["Topic"]] = inference_response.replace(
|
| 298 |
+
"Topic=", ""
|
| 299 |
+
).strip()
|
| 300 |
+
base_model.set_topic_labels(new_topics_by_text_generation)
|
| 301 |
+
|
| 302 |
+
topics_info = base_model.get_topic_info()
|
| 303 |
+
|
| 304 |
+
topic_plot = (
|
| 305 |
+
base_model.visualize_document_datamap(
|
| 306 |
+
docs=all_docs,
|
| 307 |
+
topics=all_topics,
|
| 308 |
+
custom_labels=True,
|
| 309 |
+
reduced_embeddings=reduced_embeddings_array,
|
| 310 |
+
title="",
|
| 311 |
+
sub_title=sub_title,
|
| 312 |
+
width=800,
|
| 313 |
+
height=700,
|
| 314 |
+
arrowprops={
|
| 315 |
+
"arrowstyle": "wedge,tail_width=0.5",
|
| 316 |
+
"connectionstyle": "arc3,rad=0.05",
|
| 317 |
+
"linewidth": 0,
|
| 318 |
+
"fc": "#33333377",
|
| 319 |
+
},
|
| 320 |
+
dynamic_label_size=True,
|
| 321 |
+
# label_wrap_width=12,
|
| 322 |
+
label_over_points=True,
|
| 323 |
+
max_font_size=36,
|
| 324 |
+
min_font_size=4,
|
| 325 |
)
|
| 326 |
+
if plot_type == "DataMapPlot"
|
| 327 |
+
else base_model.visualize_documents(
|
| 328 |
+
docs=all_docs,
|
| 329 |
+
reduced_embeddings=reduced_embeddings_array,
|
| 330 |
+
custom_labels=True,
|
| 331 |
+
title="",
|
| 332 |
+
)
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
dataset_clear_name = dataset.replace("/", "-")
|
| 336 |
+
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
| 337 |
+
if plot_type == "DataMapPlot":
|
| 338 |
+
topic_plot.savefig(plot_png, format="png", dpi=300)
|
| 339 |
+
else:
|
| 340 |
+
topic_plot.write_image(plot_png)
|
| 341 |
+
|
| 342 |
+
custom_labels = base_model.custom_labels_
|
| 343 |
+
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
| 344 |
+
yield (
|
| 345 |
+
gr.Accordion(open=False),
|
| 346 |
+
topics_info,
|
| 347 |
+
topic_plot,
|
| 348 |
+
gr.Label(
|
| 349 |
+
{
|
| 350 |
+
"✅ " + message: 1.0,
|
| 351 |
+
f"✅ Generating topic names with {model_id}": 1.0,
|
| 352 |
+
"⏳ Creating Interactive Space": 0.0,
|
| 353 |
+
},
|
| 354 |
+
visible=True,
|
| 355 |
+
),
|
| 356 |
+
"",
|
| 357 |
+
)
|
| 358 |
+
interactive_plot = datamapplot.create_interactive_plot(
|
| 359 |
+
reduced_embeddings_array,
|
| 360 |
+
topic_names_array,
|
| 361 |
+
hover_text=all_docs,
|
| 362 |
+
title=dataset,
|
| 363 |
+
sub_title=sub_title.replace(
|
| 364 |
+
"dataset",
|
| 365 |
+
f"<a href='https://huggingface.co/datasets/{dataset}/viewer/{config}/{split}' target='_blank'>dataset</a>",
|
| 366 |
+
),
|
| 367 |
+
enable_search=True,
|
| 368 |
+
# TODO: Export data to .arrow and also serve it
|
| 369 |
+
inline_data=True,
|
| 370 |
+
# offline_data_prefix=dataset_clear_name,
|
| 371 |
+
initial_zoom_fraction=0.8,
|
| 372 |
+
)
|
| 373 |
+
html_content = str(interactive_plot)
|
| 374 |
+
html_file_path = f"{dataset_clear_name}.html"
|
| 375 |
+
with open(html_file_path, "w", encoding="utf-8") as html_file:
|
| 376 |
+
html_file.write(html_content)
|
| 377 |
+
|
| 378 |
+
repo_id = f"{DATASETS_TOPICS_ORGANIZATION}/{dataset_clear_name}"
|
| 379 |
+
|
| 380 |
+
space_id = create_space_with_content(
|
| 381 |
+
api=api,
|
| 382 |
+
repo_id=repo_id,
|
| 383 |
+
dataset_id=dataset,
|
| 384 |
+
html_file_path=html_file_path,
|
| 385 |
+
plot_file_path=plot_png,
|
| 386 |
+
space_card=SPACE_REPO_CARD_CONTENT,
|
| 387 |
+
token=HF_TOKEN,
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
space_link = f"https://huggingface.co/spaces/{space_id}"
|
| 391 |
+
yield (
|
| 392 |
+
gr.Accordion(open=False),
|
| 393 |
+
topics_info,
|
| 394 |
+
topic_plot,
|
| 395 |
+
gr.Label(
|
| 396 |
+
{
|
| 397 |
+
"✅ " + message: 1.0,
|
| 398 |
+
f"✅ Generating topic names with {model_id}": 1.0,
|
| 399 |
+
"✅ Creating Interactive Space": 1.0,
|
| 400 |
+
},
|
| 401 |
+
visible=True,
|
| 402 |
+
),
|
| 403 |
+
f"[]({space_link})",
|
| 404 |
+
)
|
| 405 |
+
del reduce_umap_model, all_docs, reduced_embeddings_list
|
| 406 |
+
del (
|
| 407 |
+
base_model,
|
| 408 |
+
all_topics,
|
| 409 |
+
topics_info,
|
| 410 |
+
topic_plot,
|
| 411 |
+
topic_names_array,
|
| 412 |
+
interactive_plot,
|
| 413 |
+
)
|
| 414 |
+
cuda.empty_cache()
|
| 415 |
|
| 416 |
|
| 417 |
with gr.Blocks() as demo:
|
|
|
|
| 460 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
| 461 |
|
| 462 |
gr.Markdown("## Data map")
|
| 463 |
+
full_topics_generation_label = gr.Label(visible=False, show_label=False)
|
| 464 |
open_space_label = gr.Markdown()
|
| 465 |
topics_plot = gr.Plot()
|
| 466 |
+
with gr.Accordion("Topics Info", open=False):
|
| 467 |
+
topics_df = gr.DataFrame(interactive=False, visible=True)
|
| 468 |
gr.HTML(
|
| 469 |
f"<p style='text-align: center; color:orange;'>⚠ This space processes datasets in batches of <b>{CHUNK_SIZE}</b>, with a maximum of <b>{MAX_ROWS}</b> rows. If you need further assistance, please open a new issue in the Community tab.</p>"
|
| 470 |
)
|
|
|
|
| 486 |
data_details_accordion,
|
| 487 |
topics_df,
|
| 488 |
topics_plot,
|
| 489 |
+
full_topics_generation_label,
|
| 490 |
open_space_label,
|
| 491 |
],
|
| 492 |
)
|