Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,441 +1,462 @@
|
|
| 1 |
-
import requests
|
| 2 |
-
import logging
|
| 3 |
-
import duckdb
|
| 4 |
-
import numpy as np
|
| 5 |
-
from torch import cuda
|
| 6 |
-
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 7 |
-
from bertopic import BERTopic
|
| 8 |
-
from bertopic.representation import KeyBERTInspired
|
| 9 |
-
from umap import UMAP
|
| 10 |
-
from hdbscan import HDBSCAN
|
| 11 |
-
from sklearn.feature_extraction.text import CountVectorizer
|
| 12 |
-
|
| 13 |
-
from sentence_transformers import SentenceTransformer
|
| 14 |
-
|
| 15 |
-
from dotenv import load_dotenv
|
| 16 |
-
import os
|
| 17 |
-
|
| 18 |
-
import spaces
|
| 19 |
-
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
"""
|
| 26 |
|
| 27 |
-
|
| 28 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 29 |
-
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
|
| 30 |
-
|
| 31 |
-
logging.basicConfig(
|
| 32 |
-
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
MAX_ROWS = 5_000
|
| 36 |
-
CHUNK_SIZE = 1_000
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
session = requests.Session()
|
| 40 |
-
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 41 |
-
keybert = KeyBERTInspired()
|
| 42 |
-
vectorizer_model = CountVectorizer(stop_words="english")
|
| 43 |
-
|
| 44 |
-
representation_model = KeyBERTInspired()
|
| 45 |
-
|
| 46 |
-
global_topic_model = None
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def get_split_rows(dataset, config, split):
|
| 50 |
-
config_size = session.get(
|
| 51 |
-
f"https://datasets-server.huggingface.co/size?dataset={dataset}&config={config}",
|
| 52 |
-
timeout=20,
|
| 53 |
-
).json()
|
| 54 |
-
if "error" in config_size:
|
| 55 |
-
raise Exception(f"Error fetching config size: {config_size['error']}")
|
| 56 |
-
split_size = next(
|
| 57 |
-
(s for s in config_size["size"]["splits"] if s["split"] == split),
|
| 58 |
-
None,
|
| 59 |
-
)
|
| 60 |
-
if split_size is None:
|
| 61 |
-
raise Exception(f"Error fetching split {split} in config {config}")
|
| 62 |
-
return split_size["num_rows"]
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def get_parquet_urls(dataset, config, split):
|
| 66 |
-
parquet_files = session.get(
|
| 67 |
-
f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}",
|
| 68 |
-
timeout=20,
|
| 69 |
-
).json()
|
| 70 |
-
if "error" in parquet_files:
|
| 71 |
-
raise Exception(f"Error fetching parquet files: {parquet_files['error']}")
|
| 72 |
-
parquet_urls = [file["url"] for file in parquet_files["parquet_files"]]
|
| 73 |
-
logging.debug(f"Parquet files: {parquet_urls}")
|
| 74 |
-
return ",".join(f"'{url}'" for url in parquet_urls)
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
def get_docs_from_parquet(parquet_urls, column, offset, limit):
|
| 78 |
-
SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};"
|
| 79 |
-
df = duckdb.sql(SQL_QUERY).to_df()
|
| 80 |
-
logging.debug(f"Dataframe: {df.head(5)}")
|
| 81 |
-
return df[column].tolist()
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
@spaces.GPU
|
| 85 |
-
def calculate_embeddings(docs):
|
| 86 |
-
return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
def calculate_n_neighbors_and_components(n_rows):
|
| 90 |
-
n_neighbors = min(max(n_rows // 20, 15), 100)
|
| 91 |
-
n_components = 10 if n_rows > 1000 else 5 # Higher components for larger datasets
|
| 92 |
-
return n_neighbors, n_components
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
@spaces.GPU
|
| 96 |
-
def fit_model(docs, embeddings, n_neighbors, n_components):
|
| 97 |
-
global global_topic_model
|
| 98 |
-
|
| 99 |
-
umap_model = UMAP(
|
| 100 |
-
n_neighbors=n_neighbors,
|
| 101 |
-
n_components=n_components,
|
| 102 |
-
min_dist=0.0,
|
| 103 |
-
metric="cosine",
|
| 104 |
-
random_state=42,
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
hdbscan_model = HDBSCAN(
|
| 108 |
-
min_cluster_size=max(
|
| 109 |
-
5, n_neighbors // 2
|
| 110 |
-
), # Reducing min_cluster_size for fewer outliers
|
| 111 |
-
metric="euclidean",
|
| 112 |
-
cluster_selection_method="eom",
|
| 113 |
-
prediction_data=True,
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
new_model = BERTopic(
|
| 117 |
-
language="english",
|
| 118 |
-
# Sub-models
|
| 119 |
-
embedding_model=sentence_model,
|
| 120 |
-
umap_model=umap_model,
|
| 121 |
-
hdbscan_model=hdbscan_model,
|
| 122 |
-
representation_model=representation_model,
|
| 123 |
-
vectorizer_model=vectorizer_model,
|
| 124 |
-
# Hyperparameters
|
| 125 |
-
top_n_words=10,
|
| 126 |
-
verbose=True,
|
| 127 |
-
min_topic_size=n_neighbors, # Coherent with n_neighbors?
|
| 128 |
-
)
|
| 129 |
-
logging.info("Fitting new model")
|
| 130 |
-
new_model.fit(docs, embeddings)
|
| 131 |
-
logging.info("End fitting new model")
|
| 132 |
-
|
| 133 |
-
global_topic_model = new_model
|
| 134 |
-
|
| 135 |
-
logging.info("Global model updated")
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def generate_topics(dataset, config, split, column, nested_column):
|
| 139 |
-
logging.info(
|
| 140 |
-
f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
parquet_urls = get_parquet_urls(dataset, config, split)
|
| 144 |
-
split_rows = get_split_rows(dataset, config, split)
|
| 145 |
-
logging.info(f"Split rows: {split_rows}")
|
| 146 |
-
|
| 147 |
-
limit = min(split_rows, MAX_ROWS)
|
| 148 |
-
n_neighbors, n_components = calculate_n_neighbors_and_components(limit)
|
| 149 |
-
|
| 150 |
-
reduce_umap_model = UMAP(
|
| 151 |
-
n_neighbors=n_neighbors,
|
| 152 |
-
n_components=2, # For visualization, keeping it at 2 (2D)
|
| 153 |
-
min_dist=0.0,
|
| 154 |
-
metric="cosine",
|
| 155 |
-
random_state=42,
|
| 156 |
-
)
|
| 157 |
-
|
| 158 |
-
offset = 0
|
| 159 |
-
rows_processed = 0
|
| 160 |
-
|
| 161 |
-
base_model = None
|
| 162 |
-
all_docs = []
|
| 163 |
-
reduced_embeddings_list = []
|
| 164 |
-
topics_info, topic_plot = None, None
|
| 165 |
-
yield (
|
| 166 |
-
gr.DataFrame(value=[], interactive=False, visible=True),
|
| 167 |
-
gr.Plot(value=None, visible=True),
|
| 168 |
-
gr.Label(
|
| 169 |
-
{f"⚙️ Generating topics {dataset}": rows_processed / limit}, visible=True
|
| 170 |
-
),
|
| 171 |
-
)
|
| 172 |
-
while offset < limit:
|
| 173 |
-
docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
|
| 174 |
-
if not docs:
|
| 175 |
-
break
|
| 176 |
-
|
| 177 |
-
logging.info(
|
| 178 |
-
f"----> Processing chunk: {offset=} {CHUNK_SIZE=} with {len(docs)} docs"
|
| 179 |
-
)
|
| 180 |
-
|
| 181 |
-
embeddings = calculate_embeddings(docs)
|
| 182 |
-
fit_model(docs, embeddings, n_neighbors, n_components)
|
| 183 |
-
|
| 184 |
-
if base_model is None:
|
| 185 |
-
base_model = global_topic_model
|
| 186 |
-
else:
|
| 187 |
-
updated_model = BERTopic.merge_models([base_model, global_topic_model])
|
| 188 |
-
nr_new_topics = len(set(updated_model.topics_)) - len(
|
| 189 |
-
set(base_model.topics_)
|
| 190 |
-
)
|
| 191 |
-
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
| 192 |
-
logging.info(f"The following topics are newly found: {new_topics}")
|
| 193 |
-
base_model = updated_model
|
| 194 |
-
|
| 195 |
-
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
|
| 196 |
-
reduced_embeddings_list.append(reduced_embeddings)
|
| 197 |
-
|
| 198 |
-
all_docs.extend(docs)
|
| 199 |
-
|
| 200 |
-
topics_info = base_model.get_topic_info()
|
| 201 |
-
topic_plot = base_model.visualize_documents(
|
| 202 |
-
all_docs,
|
| 203 |
-
reduced_embeddings=np.vstack(reduced_embeddings_list),
|
| 204 |
-
custom_labels=True,
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
rows_processed += len(docs)
|
| 208 |
-
progress = min(rows_processed / limit, 1.0)
|
| 209 |
-
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
| 210 |
-
yield (
|
| 211 |
-
topics_info,
|
| 212 |
-
topic_plot,
|
| 213 |
-
gr.Label({f"⚙️ Generating topics {dataset}": progress}, visible=True),
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
offset += CHUNK_SIZE
|
| 217 |
-
|
| 218 |
-
logging.info("Finished processing all data")
|
| 219 |
-
yield (
|
| 220 |
-
topics_info,
|
| 221 |
-
topic_plot,
|
| 222 |
-
gr.Label({f"✅ Generating topics {dataset}": 1.0}, visible=True),
|
| 223 |
-
)
|
| 224 |
-
cuda.empty_cache()
|
| 225 |
-
|
| 226 |
-
|
| 227 |
with gr.Blocks() as demo:
|
| 228 |
-
gr.
|
| 229 |
-
gr.Markdown("## Select dataset and text column")
|
| 230 |
-
with gr.Accordion("Data details", open=True):
|
| 231 |
-
with gr.Row():
|
| 232 |
-
with gr.Column(scale=3):
|
| 233 |
-
dataset_name = HuggingfaceHubSearch(
|
| 234 |
-
label="Hub Dataset ID",
|
| 235 |
-
placeholder="Search for dataset id on Huggingface",
|
| 236 |
-
search_type="dataset",
|
| 237 |
-
)
|
| 238 |
-
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
|
| 239 |
-
split_dropdown = gr.Dropdown(label="Split", visible=False)
|
| 240 |
-
|
| 241 |
-
with gr.Accordion("Dataset preview", open=False):
|
| 242 |
-
|
| 243 |
-
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
|
| 244 |
-
def embed(name, subset, split):
|
| 245 |
-
html_code = f"""
|
| 246 |
-
<iframe
|
| 247 |
-
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
|
| 248 |
-
frameborder="0"
|
| 249 |
-
width="100%"
|
| 250 |
-
height="600px"
|
| 251 |
-
></iframe>
|
| 252 |
-
"""
|
| 253 |
-
return gr.HTML(value=html_code)
|
| 254 |
-
|
| 255 |
-
with gr.Row():
|
| 256 |
-
text_column_dropdown = gr.Dropdown(label="Text column name")
|
| 257 |
-
nested_text_column_dropdown = gr.Dropdown(
|
| 258 |
-
label="Nested text column name", visible=False
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
generate_button = gr.Button("Generate Topics", variant="primary")
|
| 262 |
-
|
| 263 |
-
gr.Markdown("## Datamap")
|
| 264 |
-
full_topics_generation_label = gr.Label(visible=False, show_label=False)
|
| 265 |
-
topics_plot = gr.Plot()
|
| 266 |
-
with gr.Accordion("Topics Info", open=False):
|
| 267 |
-
topics_df = gr.DataFrame(interactive=False, visible=True)
|
| 268 |
-
generate_button.click(
|
| 269 |
-
generate_topics,
|
| 270 |
-
inputs=[
|
| 271 |
-
dataset_name,
|
| 272 |
-
subset_dropdown,
|
| 273 |
-
split_dropdown,
|
| 274 |
-
text_column_dropdown,
|
| 275 |
-
nested_text_column_dropdown,
|
| 276 |
-
],
|
| 277 |
-
outputs=[topics_df, topics_plot, full_topics_generation_label],
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
def _resolve_dataset_selection(
|
| 281 |
-
dataset: str, default_subset: str, default_split: str, text_feature
|
| 282 |
-
):
|
| 283 |
-
if "/" not in dataset.strip().strip("/"):
|
| 284 |
-
return {
|
| 285 |
-
subset_dropdown: gr.Dropdown(visible=False),
|
| 286 |
-
split_dropdown: gr.Dropdown(visible=False),
|
| 287 |
-
text_column_dropdown: gr.Dropdown(label="Text column name"),
|
| 288 |
-
nested_text_column_dropdown: gr.Dropdown(visible=False),
|
| 289 |
-
}
|
| 290 |
-
info_resp = session.get(
|
| 291 |
-
f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20
|
| 292 |
-
).json()
|
| 293 |
-
if "error" in info_resp:
|
| 294 |
-
return {
|
| 295 |
-
subset_dropdown: gr.Dropdown(visible=False),
|
| 296 |
-
split_dropdown: gr.Dropdown(visible=False),
|
| 297 |
-
text_column_dropdown: gr.Dropdown(label="Text column name"),
|
| 298 |
-
nested_text_column_dropdown: gr.Dropdown(visible=False),
|
| 299 |
-
}
|
| 300 |
-
subsets: list[str] = list(info_resp["dataset_info"])
|
| 301 |
-
subset = default_subset if default_subset in subsets else subsets[0]
|
| 302 |
-
splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
|
| 303 |
-
split = default_split if default_split in splits else splits[0]
|
| 304 |
-
features = info_resp["dataset_info"][subset]["features"]
|
| 305 |
-
|
| 306 |
-
def _is_string_feature(feature):
|
| 307 |
-
return isinstance(feature, dict) and feature.get("dtype") == "string"
|
| 308 |
-
|
| 309 |
-
text_features = [
|
| 310 |
-
feature_name
|
| 311 |
-
for feature_name, feature in features.items()
|
| 312 |
-
if _is_string_feature(feature)
|
| 313 |
-
]
|
| 314 |
-
nested_features = [
|
| 315 |
-
feature_name
|
| 316 |
-
for feature_name, feature in features.items()
|
| 317 |
-
if isinstance(feature, dict)
|
| 318 |
-
and isinstance(next(iter(feature.values())), dict)
|
| 319 |
-
]
|
| 320 |
-
nested_text_features = [
|
| 321 |
-
feature_name
|
| 322 |
-
for feature_name in nested_features
|
| 323 |
-
if any(
|
| 324 |
-
_is_string_feature(nested_feature)
|
| 325 |
-
for nested_feature in features[feature_name].values()
|
| 326 |
-
)
|
| 327 |
-
]
|
| 328 |
-
if not text_feature:
|
| 329 |
-
return {
|
| 330 |
-
subset_dropdown: gr.Dropdown(
|
| 331 |
-
value=subset, choices=subsets, visible=len(subsets) > 1
|
| 332 |
-
),
|
| 333 |
-
split_dropdown: gr.Dropdown(
|
| 334 |
-
value=split, choices=splits, visible=len(splits) > 1
|
| 335 |
-
),
|
| 336 |
-
text_column_dropdown: gr.Dropdown(
|
| 337 |
-
choices=text_features + nested_text_features,
|
| 338 |
-
label="Text column name",
|
| 339 |
-
),
|
| 340 |
-
nested_text_column_dropdown: gr.Dropdown(visible=False),
|
| 341 |
-
}
|
| 342 |
-
if text_feature in nested_text_features:
|
| 343 |
-
nested_keys = [
|
| 344 |
-
feature_name
|
| 345 |
-
for feature_name, feature in features[text_feature].items()
|
| 346 |
-
if _is_string_feature(feature)
|
| 347 |
-
]
|
| 348 |
-
return {
|
| 349 |
-
subset_dropdown: gr.Dropdown(
|
| 350 |
-
value=subset, choices=subsets, visible=len(subsets) > 1
|
| 351 |
-
),
|
| 352 |
-
split_dropdown: gr.Dropdown(
|
| 353 |
-
value=split, choices=splits, visible=len(splits) > 1
|
| 354 |
-
),
|
| 355 |
-
text_column_dropdown: gr.Dropdown(
|
| 356 |
-
choices=text_features + nested_text_features,
|
| 357 |
-
label="Text column name",
|
| 358 |
-
),
|
| 359 |
-
nested_text_column_dropdown: gr.Dropdown(
|
| 360 |
-
value=nested_keys[0],
|
| 361 |
-
choices=nested_keys,
|
| 362 |
-
label="Nested text column name",
|
| 363 |
-
visible=True,
|
| 364 |
-
),
|
| 365 |
-
}
|
| 366 |
-
return {
|
| 367 |
-
subset_dropdown: gr.Dropdown(
|
| 368 |
-
value=subset, choices=subsets, visible=len(subsets) > 1
|
| 369 |
-
),
|
| 370 |
-
split_dropdown: gr.Dropdown(
|
| 371 |
-
value=split, choices=splits, visible=len(splits) > 1
|
| 372 |
-
),
|
| 373 |
-
text_column_dropdown: gr.Dropdown(
|
| 374 |
-
choices=text_features + nested_text_features, label="Text column name"
|
| 375 |
-
),
|
| 376 |
-
nested_text_column_dropdown: gr.Dropdown(visible=False),
|
| 377 |
-
}
|
| 378 |
-
|
| 379 |
-
@dataset_name.change(
|
| 380 |
-
inputs=[dataset_name],
|
| 381 |
-
outputs=[
|
| 382 |
-
subset_dropdown,
|
| 383 |
-
split_dropdown,
|
| 384 |
-
text_column_dropdown,
|
| 385 |
-
nested_text_column_dropdown,
|
| 386 |
-
],
|
| 387 |
-
)
|
| 388 |
-
def show_input_from_subset_dropdown(dataset: str) -> dict:
|
| 389 |
-
return _resolve_dataset_selection(
|
| 390 |
-
dataset, default_subset="default", default_split="train", text_feature=None
|
| 391 |
-
)
|
| 392 |
-
|
| 393 |
-
@subset_dropdown.change(
|
| 394 |
-
inputs=[dataset_name, subset_dropdown],
|
| 395 |
-
outputs=[
|
| 396 |
-
subset_dropdown,
|
| 397 |
-
split_dropdown,
|
| 398 |
-
text_column_dropdown,
|
| 399 |
-
nested_text_column_dropdown,
|
| 400 |
-
],
|
| 401 |
-
)
|
| 402 |
-
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
|
| 403 |
-
return _resolve_dataset_selection(
|
| 404 |
-
dataset, default_subset=subset, default_split="train", text_feature=None
|
| 405 |
-
)
|
| 406 |
-
|
| 407 |
-
@split_dropdown.change(
|
| 408 |
-
inputs=[dataset_name, subset_dropdown, split_dropdown],
|
| 409 |
-
outputs=[
|
| 410 |
-
subset_dropdown,
|
| 411 |
-
split_dropdown,
|
| 412 |
-
text_column_dropdown,
|
| 413 |
-
nested_text_column_dropdown,
|
| 414 |
-
],
|
| 415 |
-
)
|
| 416 |
-
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
|
| 417 |
-
return _resolve_dataset_selection(
|
| 418 |
-
dataset, default_subset=subset, default_split=split, text_feature=None
|
| 419 |
-
)
|
| 420 |
-
|
| 421 |
-
@text_column_dropdown.change(
|
| 422 |
-
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
|
| 423 |
-
outputs=[
|
| 424 |
-
subset_dropdown,
|
| 425 |
-
split_dropdown,
|
| 426 |
-
text_column_dropdown,
|
| 427 |
-
nested_text_column_dropdown,
|
| 428 |
-
],
|
| 429 |
-
)
|
| 430 |
-
def show_input_from_text_column_dropdown(
|
| 431 |
-
dataset: str, subset: str, split: str, text_column
|
| 432 |
-
) -> dict:
|
| 433 |
-
return _resolve_dataset_selection(
|
| 434 |
-
dataset,
|
| 435 |
-
default_subset=subset,
|
| 436 |
-
default_split=split,
|
| 437 |
-
text_feature=text_column,
|
| 438 |
-
)
|
| 439 |
-
|
| 440 |
|
|
|
|
| 441 |
demo.launch()
|
|
|
|
| 1 |
+
# import requests
|
| 2 |
+
# import logging
|
| 3 |
+
# import duckdb
|
| 4 |
+
# import numpy as np
|
| 5 |
+
# from torch import cuda
|
| 6 |
+
# from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 7 |
+
# from bertopic import BERTopic
|
| 8 |
+
# from bertopic.representation import KeyBERTInspired
|
| 9 |
+
# from umap import UMAP
|
| 10 |
+
# from hdbscan import HDBSCAN
|
| 11 |
+
# from sklearn.feature_extraction.text import CountVectorizer
|
| 12 |
+
|
| 13 |
+
# from sentence_transformers import SentenceTransformer
|
| 14 |
+
|
| 15 |
+
# from dotenv import load_dotenv
|
| 16 |
+
# import os
|
| 17 |
+
|
| 18 |
+
# import spaces
|
| 19 |
+
# import gradio as gr
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# """
|
| 23 |
+
# TODOs:
|
| 24 |
+
# - Try for small dataset <1000 rows
|
| 25 |
+
# """
|
| 26 |
+
|
| 27 |
+
# load_dotenv()
|
| 28 |
+
# HF_TOKEN = os.getenv("HF_TOKEN")
|
| 29 |
+
# assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
|
| 30 |
+
|
| 31 |
+
# logging.basicConfig(
|
| 32 |
+
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 33 |
+
# )
|
| 34 |
+
|
| 35 |
+
# MAX_ROWS = 5_000
|
| 36 |
+
# CHUNK_SIZE = 1_000
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# session = requests.Session()
|
| 40 |
+
# sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 41 |
+
# keybert = KeyBERTInspired()
|
| 42 |
+
# vectorizer_model = CountVectorizer(stop_words="english")
|
| 43 |
+
|
| 44 |
+
# representation_model = KeyBERTInspired()
|
| 45 |
+
|
| 46 |
+
# global_topic_model = None
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# def get_split_rows(dataset, config, split):
|
| 50 |
+
# config_size = session.get(
|
| 51 |
+
# f"https://datasets-server.huggingface.co/size?dataset={dataset}&config={config}",
|
| 52 |
+
# timeout=20,
|
| 53 |
+
# ).json()
|
| 54 |
+
# if "error" in config_size:
|
| 55 |
+
# raise Exception(f"Error fetching config size: {config_size['error']}")
|
| 56 |
+
# split_size = next(
|
| 57 |
+
# (s for s in config_size["size"]["splits"] if s["split"] == split),
|
| 58 |
+
# None,
|
| 59 |
+
# )
|
| 60 |
+
# if split_size is None:
|
| 61 |
+
# raise Exception(f"Error fetching split {split} in config {config}")
|
| 62 |
+
# return split_size["num_rows"]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# def get_parquet_urls(dataset, config, split):
|
| 66 |
+
# parquet_files = session.get(
|
| 67 |
+
# f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}",
|
| 68 |
+
# timeout=20,
|
| 69 |
+
# ).json()
|
| 70 |
+
# if "error" in parquet_files:
|
| 71 |
+
# raise Exception(f"Error fetching parquet files: {parquet_files['error']}")
|
| 72 |
+
# parquet_urls = [file["url"] for file in parquet_files["parquet_files"]]
|
| 73 |
+
# logging.debug(f"Parquet files: {parquet_urls}")
|
| 74 |
+
# return ",".join(f"'{url}'" for url in parquet_urls)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# def get_docs_from_parquet(parquet_urls, column, offset, limit):
|
| 78 |
+
# SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};"
|
| 79 |
+
# df = duckdb.sql(SQL_QUERY).to_df()
|
| 80 |
+
# logging.debug(f"Dataframe: {df.head(5)}")
|
| 81 |
+
# return df[column].tolist()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# @spaces.GPU
|
| 85 |
+
# def calculate_embeddings(docs):
|
| 86 |
+
# return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# def calculate_n_neighbors_and_components(n_rows):
|
| 90 |
+
# n_neighbors = min(max(n_rows // 20, 15), 100)
|
| 91 |
+
# n_components = 10 if n_rows > 1000 else 5 # Higher components for larger datasets
|
| 92 |
+
# return n_neighbors, n_components
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# @spaces.GPU
|
| 96 |
+
# def fit_model(docs, embeddings, n_neighbors, n_components):
|
| 97 |
+
# global global_topic_model
|
| 98 |
+
|
| 99 |
+
# umap_model = UMAP(
|
| 100 |
+
# n_neighbors=n_neighbors,
|
| 101 |
+
# n_components=n_components,
|
| 102 |
+
# min_dist=0.0,
|
| 103 |
+
# metric="cosine",
|
| 104 |
+
# random_state=42,
|
| 105 |
+
# )
|
| 106 |
+
|
| 107 |
+
# hdbscan_model = HDBSCAN(
|
| 108 |
+
# min_cluster_size=max(
|
| 109 |
+
# 5, n_neighbors // 2
|
| 110 |
+
# ), # Reducing min_cluster_size for fewer outliers
|
| 111 |
+
# metric="euclidean",
|
| 112 |
+
# cluster_selection_method="eom",
|
| 113 |
+
# prediction_data=True,
|
| 114 |
+
# )
|
| 115 |
+
|
| 116 |
+
# new_model = BERTopic(
|
| 117 |
+
# language="english",
|
| 118 |
+
# # Sub-models
|
| 119 |
+
# embedding_model=sentence_model,
|
| 120 |
+
# umap_model=umap_model,
|
| 121 |
+
# hdbscan_model=hdbscan_model,
|
| 122 |
+
# representation_model=representation_model,
|
| 123 |
+
# vectorizer_model=vectorizer_model,
|
| 124 |
+
# # Hyperparameters
|
| 125 |
+
# top_n_words=10,
|
| 126 |
+
# verbose=True,
|
| 127 |
+
# min_topic_size=n_neighbors, # Coherent with n_neighbors?
|
| 128 |
+
# )
|
| 129 |
+
# logging.info("Fitting new model")
|
| 130 |
+
# new_model.fit(docs, embeddings)
|
| 131 |
+
# logging.info("End fitting new model")
|
| 132 |
+
|
| 133 |
+
# global_topic_model = new_model
|
| 134 |
+
|
| 135 |
+
# logging.info("Global model updated")
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# def generate_topics(dataset, config, split, column, nested_column):
|
| 139 |
+
# logging.info(
|
| 140 |
+
# f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
|
| 141 |
+
# )
|
| 142 |
+
|
| 143 |
+
# parquet_urls = get_parquet_urls(dataset, config, split)
|
| 144 |
+
# split_rows = get_split_rows(dataset, config, split)
|
| 145 |
+
# logging.info(f"Split rows: {split_rows}")
|
| 146 |
+
|
| 147 |
+
# limit = min(split_rows, MAX_ROWS)
|
| 148 |
+
# n_neighbors, n_components = calculate_n_neighbors_and_components(limit)
|
| 149 |
+
|
| 150 |
+
# reduce_umap_model = UMAP(
|
| 151 |
+
# n_neighbors=n_neighbors,
|
| 152 |
+
# n_components=2, # For visualization, keeping it at 2 (2D)
|
| 153 |
+
# min_dist=0.0,
|
| 154 |
+
# metric="cosine",
|
| 155 |
+
# random_state=42,
|
| 156 |
+
# )
|
| 157 |
+
|
| 158 |
+
# offset = 0
|
| 159 |
+
# rows_processed = 0
|
| 160 |
+
|
| 161 |
+
# base_model = None
|
| 162 |
+
# all_docs = []
|
| 163 |
+
# reduced_embeddings_list = []
|
| 164 |
+
# topics_info, topic_plot = None, None
|
| 165 |
+
# yield (
|
| 166 |
+
# gr.DataFrame(value=[], interactive=False, visible=True),
|
| 167 |
+
# gr.Plot(value=None, visible=True),
|
| 168 |
+
# gr.Label(
|
| 169 |
+
# {f"⚙️ Generating topics {dataset}": rows_processed / limit}, visible=True
|
| 170 |
+
# ),
|
| 171 |
+
# )
|
| 172 |
+
# while offset < limit:
|
| 173 |
+
# docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
|
| 174 |
+
# if not docs:
|
| 175 |
+
# break
|
| 176 |
+
|
| 177 |
+
# logging.info(
|
| 178 |
+
# f"----> Processing chunk: {offset=} {CHUNK_SIZE=} with {len(docs)} docs"
|
| 179 |
+
# )
|
| 180 |
+
|
| 181 |
+
# embeddings = calculate_embeddings(docs)
|
| 182 |
+
# fit_model(docs, embeddings, n_neighbors, n_components)
|
| 183 |
+
|
| 184 |
+
# if base_model is None:
|
| 185 |
+
# base_model = global_topic_model
|
| 186 |
+
# else:
|
| 187 |
+
# updated_model = BERTopic.merge_models([base_model, global_topic_model])
|
| 188 |
+
# nr_new_topics = len(set(updated_model.topics_)) - len(
|
| 189 |
+
# set(base_model.topics_)
|
| 190 |
+
# )
|
| 191 |
+
# new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
| 192 |
+
# logging.info(f"The following topics are newly found: {new_topics}")
|
| 193 |
+
# base_model = updated_model
|
| 194 |
+
|
| 195 |
+
# reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
|
| 196 |
+
# reduced_embeddings_list.append(reduced_embeddings)
|
| 197 |
+
|
| 198 |
+
# all_docs.extend(docs)
|
| 199 |
+
|
| 200 |
+
# topics_info = base_model.get_topic_info()
|
| 201 |
+
# topic_plot = base_model.visualize_documents(
|
| 202 |
+
# all_docs,
|
| 203 |
+
# reduced_embeddings=np.vstack(reduced_embeddings_list),
|
| 204 |
+
# custom_labels=True,
|
| 205 |
+
# )
|
| 206 |
+
|
| 207 |
+
# rows_processed += len(docs)
|
| 208 |
+
# progress = min(rows_processed / limit, 1.0)
|
| 209 |
+
# logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
| 210 |
+
# yield (
|
| 211 |
+
# topics_info,
|
| 212 |
+
# topic_plot,
|
| 213 |
+
# gr.Label({f"⚙️ Generating topics {dataset}": progress}, visible=True),
|
| 214 |
+
# )
|
| 215 |
+
|
| 216 |
+
# offset += CHUNK_SIZE
|
| 217 |
+
|
| 218 |
+
# logging.info("Finished processing all data")
|
| 219 |
+
# yield (
|
| 220 |
+
# topics_info,
|
| 221 |
+
# topic_plot,
|
| 222 |
+
# gr.Label({f"✅ Generating topics {dataset}": 1.0}, visible=True),
|
| 223 |
+
# )
|
| 224 |
+
# cuda.empty_cache()
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# with gr.Blocks() as demo:
|
| 228 |
+
# gr.Markdown("# 💠 Dataset Topic Discovery 🔭")
|
| 229 |
+
# gr.Markdown("## Select dataset and text column")
|
| 230 |
+
# with gr.Accordion("Data details", open=True):
|
| 231 |
+
# with gr.Row():
|
| 232 |
+
# with gr.Column(scale=3):
|
| 233 |
+
# dataset_name = HuggingfaceHubSearch(
|
| 234 |
+
# label="Hub Dataset ID",
|
| 235 |
+
# placeholder="Search for dataset id on Huggingface",
|
| 236 |
+
# search_type="dataset",
|
| 237 |
+
# )
|
| 238 |
+
# subset_dropdown = gr.Dropdown(label="Subset", visible=False)
|
| 239 |
+
# split_dropdown = gr.Dropdown(label="Split", visible=False)
|
| 240 |
+
|
| 241 |
+
# with gr.Accordion("Dataset preview", open=False):
|
| 242 |
+
|
| 243 |
+
# @gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
|
| 244 |
+
# def embed(name, subset, split):
|
| 245 |
+
# html_code = f"""
|
| 246 |
+
# <iframe
|
| 247 |
+
# src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
|
| 248 |
+
# frameborder="0"
|
| 249 |
+
# width="100%"
|
| 250 |
+
# height="600px"
|
| 251 |
+
# ></iframe>
|
| 252 |
+
# """
|
| 253 |
+
# return gr.HTML(value=html_code)
|
| 254 |
+
|
| 255 |
+
# with gr.Row():
|
| 256 |
+
# text_column_dropdown = gr.Dropdown(label="Text column name")
|
| 257 |
+
# nested_text_column_dropdown = gr.Dropdown(
|
| 258 |
+
# label="Nested text column name", visible=False
|
| 259 |
+
# )
|
| 260 |
+
|
| 261 |
+
# generate_button = gr.Button("Generate Topics", variant="primary")
|
| 262 |
+
|
| 263 |
+
# gr.Markdown("## Datamap")
|
| 264 |
+
# full_topics_generation_label = gr.Label(visible=False, show_label=False)
|
| 265 |
+
# topics_plot = gr.Plot()
|
| 266 |
+
# with gr.Accordion("Topics Info", open=False):
|
| 267 |
+
# topics_df = gr.DataFrame(interactive=False, visible=True)
|
| 268 |
+
# generate_button.click(
|
| 269 |
+
# generate_topics,
|
| 270 |
+
# inputs=[
|
| 271 |
+
# dataset_name,
|
| 272 |
+
# subset_dropdown,
|
| 273 |
+
# split_dropdown,
|
| 274 |
+
# text_column_dropdown,
|
| 275 |
+
# nested_text_column_dropdown,
|
| 276 |
+
# ],
|
| 277 |
+
# outputs=[topics_df, topics_plot, full_topics_generation_label],
|
| 278 |
+
# )
|
| 279 |
+
|
| 280 |
+
# def _resolve_dataset_selection(
|
| 281 |
+
# dataset: str, default_subset: str, default_split: str, text_feature
|
| 282 |
+
# ):
|
| 283 |
+
# if "/" not in dataset.strip().strip("/"):
|
| 284 |
+
# return {
|
| 285 |
+
# subset_dropdown: gr.Dropdown(visible=False),
|
| 286 |
+
# split_dropdown: gr.Dropdown(visible=False),
|
| 287 |
+
# text_column_dropdown: gr.Dropdown(label="Text column name"),
|
| 288 |
+
# nested_text_column_dropdown: gr.Dropdown(visible=False),
|
| 289 |
+
# }
|
| 290 |
+
# info_resp = session.get(
|
| 291 |
+
# f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20
|
| 292 |
+
# ).json()
|
| 293 |
+
# if "error" in info_resp:
|
| 294 |
+
# return {
|
| 295 |
+
# subset_dropdown: gr.Dropdown(visible=False),
|
| 296 |
+
# split_dropdown: gr.Dropdown(visible=False),
|
| 297 |
+
# text_column_dropdown: gr.Dropdown(label="Text column name"),
|
| 298 |
+
# nested_text_column_dropdown: gr.Dropdown(visible=False),
|
| 299 |
+
# }
|
| 300 |
+
# subsets: list[str] = list(info_resp["dataset_info"])
|
| 301 |
+
# subset = default_subset if default_subset in subsets else subsets[0]
|
| 302 |
+
# splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
|
| 303 |
+
# split = default_split if default_split in splits else splits[0]
|
| 304 |
+
# features = info_resp["dataset_info"][subset]["features"]
|
| 305 |
+
|
| 306 |
+
# def _is_string_feature(feature):
|
| 307 |
+
# return isinstance(feature, dict) and feature.get("dtype") == "string"
|
| 308 |
+
|
| 309 |
+
# text_features = [
|
| 310 |
+
# feature_name
|
| 311 |
+
# for feature_name, feature in features.items()
|
| 312 |
+
# if _is_string_feature(feature)
|
| 313 |
+
# ]
|
| 314 |
+
# nested_features = [
|
| 315 |
+
# feature_name
|
| 316 |
+
# for feature_name, feature in features.items()
|
| 317 |
+
# if isinstance(feature, dict)
|
| 318 |
+
# and isinstance(next(iter(feature.values())), dict)
|
| 319 |
+
# ]
|
| 320 |
+
# nested_text_features = [
|
| 321 |
+
# feature_name
|
| 322 |
+
# for feature_name in nested_features
|
| 323 |
+
# if any(
|
| 324 |
+
# _is_string_feature(nested_feature)
|
| 325 |
+
# for nested_feature in features[feature_name].values()
|
| 326 |
+
# )
|
| 327 |
+
# ]
|
| 328 |
+
# if not text_feature:
|
| 329 |
+
# return {
|
| 330 |
+
# subset_dropdown: gr.Dropdown(
|
| 331 |
+
# value=subset, choices=subsets, visible=len(subsets) > 1
|
| 332 |
+
# ),
|
| 333 |
+
# split_dropdown: gr.Dropdown(
|
| 334 |
+
# value=split, choices=splits, visible=len(splits) > 1
|
| 335 |
+
# ),
|
| 336 |
+
# text_column_dropdown: gr.Dropdown(
|
| 337 |
+
# choices=text_features + nested_text_features,
|
| 338 |
+
# label="Text column name",
|
| 339 |
+
# ),
|
| 340 |
+
# nested_text_column_dropdown: gr.Dropdown(visible=False),
|
| 341 |
+
# }
|
| 342 |
+
# if text_feature in nested_text_features:
|
| 343 |
+
# nested_keys = [
|
| 344 |
+
# feature_name
|
| 345 |
+
# for feature_name, feature in features[text_feature].items()
|
| 346 |
+
# if _is_string_feature(feature)
|
| 347 |
+
# ]
|
| 348 |
+
# return {
|
| 349 |
+
# subset_dropdown: gr.Dropdown(
|
| 350 |
+
# value=subset, choices=subsets, visible=len(subsets) > 1
|
| 351 |
+
# ),
|
| 352 |
+
# split_dropdown: gr.Dropdown(
|
| 353 |
+
# value=split, choices=splits, visible=len(splits) > 1
|
| 354 |
+
# ),
|
| 355 |
+
# text_column_dropdown: gr.Dropdown(
|
| 356 |
+
# choices=text_features + nested_text_features,
|
| 357 |
+
# label="Text column name",
|
| 358 |
+
# ),
|
| 359 |
+
# nested_text_column_dropdown: gr.Dropdown(
|
| 360 |
+
# value=nested_keys[0],
|
| 361 |
+
# choices=nested_keys,
|
| 362 |
+
# label="Nested text column name",
|
| 363 |
+
# visible=True,
|
| 364 |
+
# ),
|
| 365 |
+
# }
|
| 366 |
+
# return {
|
| 367 |
+
# subset_dropdown: gr.Dropdown(
|
| 368 |
+
# value=subset, choices=subsets, visible=len(subsets) > 1
|
| 369 |
+
# ),
|
| 370 |
+
# split_dropdown: gr.Dropdown(
|
| 371 |
+
# value=split, choices=splits, visible=len(splits) > 1
|
| 372 |
+
# ),
|
| 373 |
+
# text_column_dropdown: gr.Dropdown(
|
| 374 |
+
# choices=text_features + nested_text_features, label="Text column name"
|
| 375 |
+
# ),
|
| 376 |
+
# nested_text_column_dropdown: gr.Dropdown(visible=False),
|
| 377 |
+
# }
|
| 378 |
+
|
| 379 |
+
# @dataset_name.change(
|
| 380 |
+
# inputs=[dataset_name],
|
| 381 |
+
# outputs=[
|
| 382 |
+
# subset_dropdown,
|
| 383 |
+
# split_dropdown,
|
| 384 |
+
# text_column_dropdown,
|
| 385 |
+
# nested_text_column_dropdown,
|
| 386 |
+
# ],
|
| 387 |
+
# )
|
| 388 |
+
# def show_input_from_subset_dropdown(dataset: str) -> dict:
|
| 389 |
+
# return _resolve_dataset_selection(
|
| 390 |
+
# dataset, default_subset="default", default_split="train", text_feature=None
|
| 391 |
+
# )
|
| 392 |
+
|
| 393 |
+
# @subset_dropdown.change(
|
| 394 |
+
# inputs=[dataset_name, subset_dropdown],
|
| 395 |
+
# outputs=[
|
| 396 |
+
# subset_dropdown,
|
| 397 |
+
# split_dropdown,
|
| 398 |
+
# text_column_dropdown,
|
| 399 |
+
# nested_text_column_dropdown,
|
| 400 |
+
# ],
|
| 401 |
+
# )
|
| 402 |
+
# def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
|
| 403 |
+
# return _resolve_dataset_selection(
|
| 404 |
+
# dataset, default_subset=subset, default_split="train", text_feature=None
|
| 405 |
+
# )
|
| 406 |
+
|
| 407 |
+
# @split_dropdown.change(
|
| 408 |
+
# inputs=[dataset_name, subset_dropdown, split_dropdown],
|
| 409 |
+
# outputs=[
|
| 410 |
+
# subset_dropdown,
|
| 411 |
+
# split_dropdown,
|
| 412 |
+
# text_column_dropdown,
|
| 413 |
+
# nested_text_column_dropdown,
|
| 414 |
+
# ],
|
| 415 |
+
# )
|
| 416 |
+
# def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
|
| 417 |
+
# return _resolve_dataset_selection(
|
| 418 |
+
# dataset, default_subset=subset, default_split=split, text_feature=None
|
| 419 |
+
# )
|
| 420 |
+
|
| 421 |
+
# @text_column_dropdown.change(
|
| 422 |
+
# inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
|
| 423 |
+
# outputs=[
|
| 424 |
+
# subset_dropdown,
|
| 425 |
+
# split_dropdown,
|
| 426 |
+
# text_column_dropdown,
|
| 427 |
+
# nested_text_column_dropdown,
|
| 428 |
+
# ],
|
| 429 |
+
# )
|
| 430 |
+
# def show_input_from_text_column_dropdown(
|
| 431 |
+
# dataset: str, subset: str, split: str, text_column
|
| 432 |
+
# ) -> dict:
|
| 433 |
+
# return _resolve_dataset_selection(
|
| 434 |
+
# dataset,
|
| 435 |
+
# default_subset=subset,
|
| 436 |
+
# default_split=split,
|
| 437 |
+
# text_feature=text_column,
|
| 438 |
+
# )
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
# demo.launch()
|
| 442 |
|
| 443 |
+
import gradio as gr
|
| 444 |
|
| 445 |
+
# Full HTML content
|
| 446 |
+
html_content = """
|
| 447 |
+
<h1 style="color: blue;">Welcome to My Gradio App</h1>
|
| 448 |
+
<p>This is a paragraph with <b>bold</b> and <i>italic</i> text.</p>
|
| 449 |
+
<ul>
|
| 450 |
+
<li>First item</li>
|
| 451 |
+
<li>Second item</li>
|
| 452 |
+
<li>Third item</li>
|
| 453 |
+
</ul>
|
| 454 |
+
<img src="https://via.placeholder.com/150" alt="Sample Image">
|
| 455 |
"""
|
| 456 |
|
| 457 |
+
# Create a Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
with gr.Blocks() as demo:
|
| 459 |
+
gr.HTML(html_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
+
# Launch the app
|
| 462 |
demo.launch()
|