Spaces:
Runtime error
Runtime error
Trying to reduce GPU load?
Browse files
app.py
CHANGED
|
@@ -54,14 +54,18 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 54 |
trust_remote_code=True,
|
| 55 |
quantization_config=bnb_config,
|
| 56 |
device_map="auto",
|
|
|
|
| 57 |
)
|
| 58 |
|
|
|
|
|
|
|
|
|
|
| 59 |
generator = pipeline(
|
| 60 |
model=model,
|
| 61 |
tokenizer=tokenizer,
|
| 62 |
task="text-generation",
|
| 63 |
temperature=0.1,
|
| 64 |
-
max_new_tokens=
|
| 65 |
repetition_penalty=1.1,
|
| 66 |
)
|
| 67 |
|
|
@@ -71,19 +75,31 @@ representation_model = {
|
|
| 71 |
"Llama2": llama2,
|
| 72 |
}
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
umap_model = UMAP(
|
| 75 |
-
n_neighbors=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
|
| 78 |
hdbscan_model = HDBSCAN(
|
| 79 |
-
min_cluster_size=
|
| 80 |
metric="euclidean",
|
| 81 |
cluster_selection_method="eom",
|
| 82 |
prediction_data=True,
|
| 83 |
)
|
| 84 |
|
| 85 |
reduce_umap_model = UMAP(
|
| 86 |
-
n_neighbors=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
|
| 89 |
|
|
@@ -107,8 +123,9 @@ def get_docs_from_parquet(parquet_urls, column, offset, limit):
|
|
| 107 |
|
| 108 |
|
| 109 |
# @spaces.GPU
|
|
|
|
| 110 |
def calculate_embeddings(docs):
|
| 111 |
-
return sentence_model.encode(docs, show_progress_bar=True, batch_size=
|
| 112 |
|
| 113 |
|
| 114 |
# @spaces.GPU
|
|
@@ -124,7 +141,7 @@ def fit_model(base_model, docs, embeddings):
|
|
| 124 |
# Hyperparameters
|
| 125 |
top_n_words=10,
|
| 126 |
verbose=True,
|
| 127 |
-
min_topic_size=15,
|
| 128 |
)
|
| 129 |
logging.debug("Fitting new model")
|
| 130 |
new_model.fit(docs, embeddings)
|
|
@@ -185,13 +202,14 @@ def generate_topics(dataset, config, split, column, nested_column):
|
|
| 185 |
# )
|
| 186 |
topic_plot = base_model.visualize_barchart()
|
| 187 |
|
| 188 |
-
logging.info(f"Topics: {
|
| 189 |
|
| 190 |
yield topics_info, topic_plot
|
| 191 |
|
| 192 |
offset += chunk_size
|
| 193 |
|
| 194 |
logging.info("Finished processing all data")
|
|
|
|
| 195 |
return topics_info, topic_plot
|
| 196 |
|
| 197 |
|
|
@@ -229,7 +247,7 @@ with gr.Blocks() as demo:
|
|
| 229 |
label="Nested text column name", visible=False
|
| 230 |
)
|
| 231 |
|
| 232 |
-
generate_button = gr.Button("Generate
|
| 233 |
|
| 234 |
gr.Markdown("## Datamap")
|
| 235 |
topics_plot = gr.Plot()
|
|
|
|
| 54 |
trust_remote_code=True,
|
| 55 |
quantization_config=bnb_config,
|
| 56 |
device_map="auto",
|
| 57 |
+
offload_folder="offload", # Offloading part of the model to CPU to save GPU memory
|
| 58 |
)
|
| 59 |
|
| 60 |
+
# Enable gradient checkpointing for memory efficiency during backprop
|
| 61 |
+
model.gradient_checkpointing_enable()
|
| 62 |
+
|
| 63 |
generator = pipeline(
|
| 64 |
model=model,
|
| 65 |
tokenizer=tokenizer,
|
| 66 |
task="text-generation",
|
| 67 |
temperature=0.1,
|
| 68 |
+
max_new_tokens=200, # Reduced max_new_tokens to limit memory consumption
|
| 69 |
repetition_penalty=1.1,
|
| 70 |
)
|
| 71 |
|
|
|
|
| 75 |
"Llama2": llama2,
|
| 76 |
}
|
| 77 |
|
| 78 |
+
# TODO: It should be proporcional to the number of rows
|
| 79 |
+
# For small datasets (1-200 rows) it worked fine with 2 neighbors
|
| 80 |
+
N_NEIGHBORS = 15
|
| 81 |
+
|
| 82 |
umap_model = UMAP(
|
| 83 |
+
n_neighbors=N_NEIGHBORS,
|
| 84 |
+
n_components=5,
|
| 85 |
+
min_dist=0.0,
|
| 86 |
+
metric="cosine",
|
| 87 |
+
random_state=42,
|
| 88 |
)
|
| 89 |
|
| 90 |
hdbscan_model = HDBSCAN(
|
| 91 |
+
min_cluster_size=N_NEIGHBORS,
|
| 92 |
metric="euclidean",
|
| 93 |
cluster_selection_method="eom",
|
| 94 |
prediction_data=True,
|
| 95 |
)
|
| 96 |
|
| 97 |
reduce_umap_model = UMAP(
|
| 98 |
+
n_neighbors=N_NEIGHBORS,
|
| 99 |
+
n_components=2,
|
| 100 |
+
min_dist=0.0,
|
| 101 |
+
metric="cosine",
|
| 102 |
+
random_state=42,
|
| 103 |
)
|
| 104 |
|
| 105 |
|
|
|
|
| 123 |
|
| 124 |
|
| 125 |
# @spaces.GPU
|
| 126 |
+
# TODO: Modify batch size to reduce memory consumption during embedding calculation, which value is better?
|
| 127 |
def calculate_embeddings(docs):
|
| 128 |
+
return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
|
| 129 |
|
| 130 |
|
| 131 |
# @spaces.GPU
|
|
|
|
| 141 |
# Hyperparameters
|
| 142 |
top_n_words=10,
|
| 143 |
verbose=True,
|
| 144 |
+
min_topic_size=15, # TODO: Should this value be coherent with N_NEIGHBORS?
|
| 145 |
)
|
| 146 |
logging.debug("Fitting new model")
|
| 147 |
new_model.fit(docs, embeddings)
|
|
|
|
| 202 |
# )
|
| 203 |
topic_plot = base_model.visualize_barchart()
|
| 204 |
|
| 205 |
+
logging.info(f"Topics: {repr_model_topics}")
|
| 206 |
|
| 207 |
yield topics_info, topic_plot
|
| 208 |
|
| 209 |
offset += chunk_size
|
| 210 |
|
| 211 |
logging.info("Finished processing all data")
|
| 212 |
+
cuda.empty_cache() # Clear cache at the end of each chunk
|
| 213 |
return topics_info, topic_plot
|
| 214 |
|
| 215 |
|
|
|
|
| 247 |
label="Nested text column name", visible=False
|
| 248 |
)
|
| 249 |
|
| 250 |
+
generate_button = gr.Button("Generate Topics", variant="primary")
|
| 251 |
|
| 252 |
gr.Markdown("## Datamap")
|
| 253 |
topics_plot = gr.Plot()
|