Spaces:
Runtime error
Runtime error
Progress bar by task
Browse files
app.py
CHANGED
|
@@ -178,9 +178,9 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
| 178 |
topics_info, topic_plot = None, None
|
| 179 |
full_processing = split_rows <= MAX_ROWS
|
| 180 |
message = (
|
| 181 |
-
f"
|
| 182 |
if full_processing
|
| 183 |
-
else f"
|
| 184 |
)
|
| 185 |
sub_title = (
|
| 186 |
f"Data map for the entire dataset ({limit} rows) using the column '{column}'"
|
|
@@ -191,48 +191,140 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
| 191 |
gr.Accordion(open=False),
|
| 192 |
gr.DataFrame(value=[], interactive=False, visible=True),
|
| 193 |
gr.Plot(value=None, visible=True),
|
| 194 |
-
gr.Label({message:
|
| 195 |
"",
|
| 196 |
)
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
|
|
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
)
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
| 219 |
)
|
| 220 |
-
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
| 221 |
-
logging.info(f"The following topics are newly found: {new_topics}")
|
| 222 |
-
base_model = updated_model
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
-
topics_info = base_model.get_topic_info()
|
| 231 |
all_topics = base_model.topics_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
topic_plot = (
|
| 233 |
base_model.visualize_document_datamap(
|
| 234 |
docs=all_docs,
|
| 235 |
topics=all_topics,
|
|
|
|
| 236 |
reduced_embeddings=reduced_embeddings_array,
|
| 237 |
title="",
|
| 238 |
sub_title=sub_title,
|
|
@@ -258,137 +350,87 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
| 258 |
title="",
|
| 259 |
)
|
| 260 |
)
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
| 264 |
-
message = (
|
| 265 |
-
f"⚙️ Processing full dataset: {rows_processed} of {limit}"
|
| 266 |
-
if full_processing
|
| 267 |
-
else f"⚙️ Processing partial dataset: {rows_processed} of {limit} rows"
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
yield (
|
| 271 |
gr.Accordion(open=False),
|
| 272 |
topics_info,
|
| 273 |
topic_plot,
|
| 274 |
-
gr.Label(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
"",
|
| 276 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
|
| 279 |
-
del docs, embeddings, new_model, reduced_embeddings
|
| 280 |
-
logging.info("Finished processing all data")
|
| 281 |
-
|
| 282 |
-
dataset_clear_name = dataset.replace("/", "-")
|
| 283 |
-
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
| 284 |
-
if plot_type == "DataMapPlot":
|
| 285 |
-
topic_plot.savefig(plot_png, format="png", dpi=300)
|
| 286 |
-
else:
|
| 287 |
-
topic_plot.write_image(plot_png)
|
| 288 |
-
|
| 289 |
-
all_topics = base_model.topics_
|
| 290 |
-
topic_info = base_model.get_topic_info()
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
)
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
base_model.set_topic_labels(new_topics_by_text_generation)
|
| 305 |
-
|
| 306 |
-
topics_info = base_model.get_topic_info()
|
| 307 |
-
|
| 308 |
-
topic_plot = (
|
| 309 |
-
base_model.visualize_document_datamap(
|
| 310 |
-
docs=all_docs,
|
| 311 |
-
topics=all_topics,
|
| 312 |
-
custom_labels=True,
|
| 313 |
-
reduced_embeddings=reduced_embeddings_array,
|
| 314 |
-
title="",
|
| 315 |
-
sub_title=sub_title,
|
| 316 |
-
width=800,
|
| 317 |
-
height=700,
|
| 318 |
-
arrowprops={
|
| 319 |
-
"arrowstyle": "wedge,tail_width=0.5",
|
| 320 |
-
"connectionstyle": "arc3,rad=0.05",
|
| 321 |
-
"linewidth": 0,
|
| 322 |
-
"fc": "#33333377",
|
| 323 |
-
},
|
| 324 |
-
dynamic_label_size=True,
|
| 325 |
-
# label_wrap_width=12,
|
| 326 |
-
label_over_points=True,
|
| 327 |
-
max_font_size=36,
|
| 328 |
-
min_font_size=4,
|
| 329 |
)
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
| 336 |
)
|
| 337 |
-
)
|
| 338 |
-
custom_labels = base_model.custom_labels_
|
| 339 |
-
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
| 340 |
-
|
| 341 |
-
interactive_plot = datamapplot.create_interactive_plot(
|
| 342 |
-
reduced_embeddings_array,
|
| 343 |
-
topic_names_array,
|
| 344 |
-
hover_text=all_docs,
|
| 345 |
-
title=dataset,
|
| 346 |
-
sub_title=sub_title.replace(
|
| 347 |
-
"dataset",
|
| 348 |
-
f"<a href='https://huggingface.co/datasets/{dataset}/viewer/{config}/{split}' target='_blank'>dataset</a>",
|
| 349 |
-
),
|
| 350 |
-
enable_search=True,
|
| 351 |
-
# TODO: Export data to .arrow and also serve it
|
| 352 |
-
inline_data=True,
|
| 353 |
-
# offline_data_prefix=dataset_clear_name,
|
| 354 |
-
initial_zoom_fraction=0.8,
|
| 355 |
-
)
|
| 356 |
-
html_content = str(interactive_plot)
|
| 357 |
-
html_file_path = f"{dataset_clear_name}.html"
|
| 358 |
-
with open(html_file_path, "w", encoding="utf-8") as html_file:
|
| 359 |
-
html_file.write(html_content)
|
| 360 |
-
|
| 361 |
-
repo_id = f"{DATASETS_TOPICS_ORGANIZATION}/{dataset_clear_name}"
|
| 362 |
-
|
| 363 |
-
space_id = create_space_with_content(
|
| 364 |
-
api=api,
|
| 365 |
-
repo_id=repo_id,
|
| 366 |
-
dataset_id=dataset,
|
| 367 |
-
html_file_path=html_file_path,
|
| 368 |
-
plot_file_path=plot_png,
|
| 369 |
-
space_card=SPACE_REPO_CARD_CONTENT,
|
| 370 |
-
token=HF_TOKEN,
|
| 371 |
-
)
|
| 372 |
-
|
| 373 |
-
space_link = f"https://huggingface.co/spaces/{space_id}"
|
| 374 |
-
yield (
|
| 375 |
-
gr.Accordion(open=False),
|
| 376 |
-
topics_info,
|
| 377 |
-
topic_plot,
|
| 378 |
-
gr.Label(
|
| 379 |
-
{f"✅ Done: {rows_processed} rows have been processed": 1.0}, visible=True
|
| 380 |
-
),
|
| 381 |
-
f"[]({space_link})",
|
| 382 |
-
)
|
| 383 |
-
del reduce_umap_model, all_docs, reduced_embeddings_list
|
| 384 |
-
del (
|
| 385 |
-
base_model,
|
| 386 |
-
all_topics,
|
| 387 |
-
topic_info,
|
| 388 |
-
topic_names_array,
|
| 389 |
-
interactive_plot,
|
| 390 |
-
)
|
| 391 |
-
cuda.empty_cache()
|
| 392 |
|
| 393 |
|
| 394 |
with gr.Blocks() as demo:
|
|
@@ -437,11 +479,11 @@ with gr.Blocks() as demo:
|
|
| 437 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
| 438 |
|
| 439 |
gr.Markdown("## Data map")
|
| 440 |
-
|
| 441 |
open_space_label = gr.Markdown()
|
| 442 |
topics_plot = gr.Plot()
|
| 443 |
-
with gr.Accordion("Topics Info", open=False):
|
| 444 |
-
|
| 445 |
gr.HTML(
|
| 446 |
f"<p style='text-align: center; color:orange;'>⚠ This space processes datasets in batches of <b>{CHUNK_SIZE}</b>, with a maximum of <b>{MAX_ROWS}</b> rows. If you need further assistance, please open a new issue in the Community tab.</p>"
|
| 447 |
)
|
|
@@ -463,7 +505,7 @@ with gr.Blocks() as demo:
|
|
| 463 |
data_details_accordion,
|
| 464 |
topics_df,
|
| 465 |
topics_plot,
|
| 466 |
-
|
| 467 |
open_space_label,
|
| 468 |
],
|
| 469 |
)
|
|
|
|
| 178 |
topics_info, topic_plot = None, None
|
| 179 |
full_processing = split_rows <= MAX_ROWS
|
| 180 |
message = (
|
| 181 |
+
f"Processing topics for full dataset: 0 of ({split_rows} rows)"
|
| 182 |
if full_processing
|
| 183 |
+
else f"Processing topics for partial dataset 0 of ({limit} rows)"
|
| 184 |
)
|
| 185 |
sub_title = (
|
| 186 |
f"Data map for the entire dataset ({limit} rows) using the column '{column}'"
|
|
|
|
| 191 |
gr.Accordion(open=False),
|
| 192 |
gr.DataFrame(value=[], interactive=False, visible=True),
|
| 193 |
gr.Plot(value=None, visible=True),
|
| 194 |
+
gr.Label({"⏳ " + message: 0.0}, visible=True),
|
| 195 |
"",
|
| 196 |
)
|
| 197 |
|
| 198 |
+
try:
|
| 199 |
+
while offset < limit:
|
| 200 |
+
docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
|
| 201 |
+
if not docs:
|
| 202 |
+
break
|
| 203 |
|
| 204 |
+
logging.info(
|
| 205 |
+
f"----> Processing chunk: {offset=} {CHUNK_SIZE=} with {len(docs)} docs"
|
| 206 |
+
)
|
| 207 |
|
| 208 |
+
embeddings = calculate_embeddings(docs)
|
| 209 |
+
new_model = fit_model(docs, embeddings, n_neighbors, n_components)
|
| 210 |
|
| 211 |
+
if base_model is None:
|
| 212 |
+
base_model = new_model
|
| 213 |
+
logging.info(
|
| 214 |
+
f"The following topics are newly found: {base_model.topic_labels_}"
|
| 215 |
+
)
|
| 216 |
+
else:
|
| 217 |
+
updated_model = BERTopic.merge_models([base_model, new_model])
|
| 218 |
+
nr_new_topics = len(set(updated_model.topics_)) - len(
|
| 219 |
+
set(base_model.topics_)
|
| 220 |
+
)
|
| 221 |
+
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
| 222 |
+
logging.info(f"The following topics are newly found: {new_topics}")
|
| 223 |
+
base_model = updated_model
|
| 224 |
+
|
| 225 |
+
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
|
| 226 |
+
reduced_embeddings_list.append(reduced_embeddings)
|
| 227 |
+
|
| 228 |
+
all_docs.extend(docs)
|
| 229 |
+
reduced_embeddings_array = np.vstack(reduced_embeddings_list)
|
| 230 |
+
|
| 231 |
+
topics_info = base_model.get_topic_info()
|
| 232 |
+
all_topics = base_model.topics_
|
| 233 |
+
topic_plot = (
|
| 234 |
+
base_model.visualize_document_datamap(
|
| 235 |
+
docs=all_docs,
|
| 236 |
+
topics=all_topics,
|
| 237 |
+
reduced_embeddings=reduced_embeddings_array,
|
| 238 |
+
title="",
|
| 239 |
+
sub_title=sub_title,
|
| 240 |
+
width=800,
|
| 241 |
+
height=700,
|
| 242 |
+
arrowprops={
|
| 243 |
+
"arrowstyle": "wedge,tail_width=0.5",
|
| 244 |
+
"connectionstyle": "arc3,rad=0.05",
|
| 245 |
+
"linewidth": 0,
|
| 246 |
+
"fc": "#33333377",
|
| 247 |
+
},
|
| 248 |
+
dynamic_label_size=True,
|
| 249 |
+
# label_wrap_width=12,
|
| 250 |
+
label_over_points=True,
|
| 251 |
+
max_font_size=36,
|
| 252 |
+
min_font_size=4,
|
| 253 |
+
)
|
| 254 |
+
if plot_type == "DataMapPlot"
|
| 255 |
+
else base_model.visualize_documents(
|
| 256 |
+
docs=all_docs,
|
| 257 |
+
reduced_embeddings=reduced_embeddings_array,
|
| 258 |
+
custom_labels=True,
|
| 259 |
+
title="",
|
| 260 |
+
)
|
| 261 |
)
|
| 262 |
+
rows_processed += len(docs)
|
| 263 |
+
progress = min(rows_processed / limit, 1.0)
|
| 264 |
+
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
| 265 |
+
message = (
|
| 266 |
+
f"Processing topics for full dataset: {rows_processed} of {limit}"
|
| 267 |
+
if full_processing
|
| 268 |
+
else f"Processing topics for partial dataset: {rows_processed} of {limit} rows"
|
| 269 |
)
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
+
yield (
|
| 272 |
+
gr.Accordion(open=False),
|
| 273 |
+
topics_info,
|
| 274 |
+
topic_plot,
|
| 275 |
+
gr.Label({"⏳ " + message: progress}, visible=True),
|
| 276 |
+
"",
|
| 277 |
+
)
|
| 278 |
|
| 279 |
+
offset += CHUNK_SIZE
|
| 280 |
+
del docs, embeddings, new_model, reduced_embeddings
|
| 281 |
+
logging.info("Finished processing topic modeling data")
|
| 282 |
+
|
| 283 |
+
yield (
|
| 284 |
+
gr.Accordion(open=False),
|
| 285 |
+
topics_info,
|
| 286 |
+
topic_plot,
|
| 287 |
+
gr.Label(
|
| 288 |
+
{
|
| 289 |
+
"✅ " + message: 1.0,
|
| 290 |
+
f"⏳ Generating topic names with {model_id}": 0.0,
|
| 291 |
+
},
|
| 292 |
+
visible=True,
|
| 293 |
+
),
|
| 294 |
+
"",
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
dataset_clear_name = dataset.replace("/", "-")
|
| 298 |
+
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
| 299 |
+
if plot_type == "DataMapPlot":
|
| 300 |
+
topic_plot.savefig(plot_png, format="png", dpi=300)
|
| 301 |
+
else:
|
| 302 |
+
topic_plot.write_image(plot_png)
|
| 303 |
|
|
|
|
| 304 |
all_topics = base_model.topics_
|
| 305 |
+
topics_info = base_model.get_topic_info()
|
| 306 |
+
|
| 307 |
+
new_topics_by_text_generation = {}
|
| 308 |
+
for _, row in topics_info.iterrows():
|
| 309 |
+
logging.info(
|
| 310 |
+
f"Processing topic: {row['Topic']} - Representation: {row['Representation']}"
|
| 311 |
+
)
|
| 312 |
+
prompt = f"{REPRESENTATION_PROMPT.replace('[KEYWORDS]', ','.join(row['Representation']))}"
|
| 313 |
+
logging.info(prompt)
|
| 314 |
+
topic_description = generator(prompt)
|
| 315 |
+
logging.info(topic_description)
|
| 316 |
+
new_topics_by_text_generation[row["Topic"]] = topic_description[0][
|
| 317 |
+
"generated_text"
|
| 318 |
+
].replace(prompt, "")
|
| 319 |
+
base_model.set_topic_labels(new_topics_by_text_generation)
|
| 320 |
+
|
| 321 |
+
topics_info = base_model.get_topic_info()
|
| 322 |
+
|
| 323 |
topic_plot = (
|
| 324 |
base_model.visualize_document_datamap(
|
| 325 |
docs=all_docs,
|
| 326 |
topics=all_topics,
|
| 327 |
+
custom_labels=True,
|
| 328 |
reduced_embeddings=reduced_embeddings_array,
|
| 329 |
title="",
|
| 330 |
sub_title=sub_title,
|
|
|
|
| 350 |
title="",
|
| 351 |
)
|
| 352 |
)
|
| 353 |
+
custom_labels = base_model.custom_labels_
|
| 354 |
+
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
yield (
|
| 356 |
gr.Accordion(open=False),
|
| 357 |
topics_info,
|
| 358 |
topic_plot,
|
| 359 |
+
gr.Label(
|
| 360 |
+
{
|
| 361 |
+
"✅ " + message: 1.0,
|
| 362 |
+
f"✅ Generating topic names with {model_id}": 1.0,
|
| 363 |
+
"⏳ Creating Interactive Space": 0.0,
|
| 364 |
+
},
|
| 365 |
+
visible=True,
|
| 366 |
+
),
|
| 367 |
"",
|
| 368 |
)
|
| 369 |
+
interactive_plot = datamapplot.create_interactive_plot(
|
| 370 |
+
reduced_embeddings_array,
|
| 371 |
+
topic_names_array,
|
| 372 |
+
hover_text=all_docs,
|
| 373 |
+
title=dataset,
|
| 374 |
+
sub_title=sub_title.replace(
|
| 375 |
+
"dataset",
|
| 376 |
+
f"<a href='https://huggingface.co/datasets/{dataset}/viewer/{config}/{split}' target='_blank'>dataset</a>",
|
| 377 |
+
),
|
| 378 |
+
enable_search=True,
|
| 379 |
+
# TODO: Export data to .arrow and also serve it
|
| 380 |
+
inline_data=True,
|
| 381 |
+
# offline_data_prefix=dataset_clear_name,
|
| 382 |
+
initial_zoom_fraction=0.8,
|
| 383 |
+
)
|
| 384 |
+
html_content = str(interactive_plot)
|
| 385 |
+
html_file_path = f"{dataset_clear_name}.html"
|
| 386 |
+
with open(html_file_path, "w", encoding="utf-8") as html_file:
|
| 387 |
+
html_file.write(html_content)
|
| 388 |
+
|
| 389 |
+
repo_id = f"{DATASETS_TOPICS_ORGANIZATION}/{dataset_clear_name}"
|
| 390 |
+
|
| 391 |
+
space_id = create_space_with_content(
|
| 392 |
+
api=api,
|
| 393 |
+
repo_id=repo_id,
|
| 394 |
+
dataset_id=dataset,
|
| 395 |
+
html_file_path=html_file_path,
|
| 396 |
+
plot_file_path=plot_png,
|
| 397 |
+
space_card=SPACE_REPO_CARD_CONTENT,
|
| 398 |
+
token=HF_TOKEN,
|
| 399 |
+
)
|
| 400 |
|
| 401 |
+
space_link = f"https://huggingface.co/spaces/{space_id}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
+
yield (
|
| 404 |
+
gr.Accordion(open=False),
|
| 405 |
+
topics_info,
|
| 406 |
+
topic_plot,
|
| 407 |
+
gr.Label(
|
| 408 |
+
{
|
| 409 |
+
"✅ " + message: 1.0,
|
| 410 |
+
f"✅ Generating topic names with {model_id}": 1.0,
|
| 411 |
+
"✅ Creating Interactive Space": 1.0,
|
| 412 |
+
},
|
| 413 |
+
visible=True,
|
| 414 |
+
),
|
| 415 |
+
f"[]({space_link})",
|
| 416 |
)
|
| 417 |
+
del reduce_umap_model, all_docs, reduced_embeddings_list
|
| 418 |
+
del (
|
| 419 |
+
base_model,
|
| 420 |
+
all_topics,
|
| 421 |
+
topic_info,
|
| 422 |
+
topic_names_array,
|
| 423 |
+
interactive_plot,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
)
|
| 425 |
+
cuda.empty_cache()
|
| 426 |
+
except Exception as error:
|
| 427 |
+
return (
|
| 428 |
+
gr.Accordion(open=True),
|
| 429 |
+
gr.DataFrame(value=[], interactive=False, visible=True),
|
| 430 |
+
gr.Plot(value=None, visible=True),
|
| 431 |
+
gr.Label({f"❌ Error: {error}": 0.0}, visible=True),
|
| 432 |
+
"",
|
| 433 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
|
| 435 |
|
| 436 |
with gr.Blocks() as demo:
|
|
|
|
| 479 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
| 480 |
|
| 481 |
gr.Markdown("## Data map")
|
| 482 |
+
progress_label = gr.Label(visible=False, show_label=False)
|
| 483 |
open_space_label = gr.Markdown()
|
| 484 |
topics_plot = gr.Plot()
|
| 485 |
+
# with gr.Accordion("Topics Info", open=False):
|
| 486 |
+
topics_df = gr.DataFrame(interactive=False, visible=True)
|
| 487 |
gr.HTML(
|
| 488 |
f"<p style='text-align: center; color:orange;'>⚠ This space processes datasets in batches of <b>{CHUNK_SIZE}</b>, with a maximum of <b>{MAX_ROWS}</b> rows. If you need further assistance, please open a new issue in the Community tab.</p>"
|
| 489 |
)
|
|
|
|
| 505 |
data_details_accordion,
|
| 506 |
topics_df,
|
| 507 |
topics_plot,
|
| 508 |
+
progress_label,
|
| 509 |
open_space_label,
|
| 510 |
],
|
| 511 |
)
|