Spaces:
Runtime error
Runtime error
Adding Llama2 topics
Browse files- app.py +127 -51
- prompts.py +29 -0
app.py
CHANGED
|
@@ -6,9 +6,24 @@ from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
| 6 |
from bertopic import BERTopic
|
| 7 |
import pandas as pd
|
| 8 |
import gradio as gr
|
| 9 |
-
from bertopic.representation import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from umap import UMAP
|
| 11 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# from cuml.cluster import HDBSCAN
|
| 14 |
# from cuml.manifold import UMAP
|
|
@@ -21,6 +36,60 @@ logging.basicConfig(
|
|
| 21 |
|
| 22 |
session = requests.Session()
|
| 23 |
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
def get_parquet_urls(dataset, config, split):
|
|
@@ -44,22 +113,27 @@ def get_docs_from_parquet(parquet_urls, column, offset, limit):
|
|
| 44 |
|
| 45 |
# @spaces.GPU
|
| 46 |
def calculate_embeddings(docs):
|
| 47 |
-
|
| 48 |
-
logging.info(f"Embeddings shape: {embeddings.shape}")
|
| 49 |
-
return embeddings
|
| 50 |
|
| 51 |
|
| 52 |
# @spaces.GPU
|
| 53 |
-
def fit_model(base_model,
|
| 54 |
new_model = BERTopic(
|
| 55 |
"english",
|
|
|
|
| 56 |
embedding_model=sentence_model,
|
|
|
|
|
|
|
| 57 |
representation_model=representation_model,
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
)
|
| 60 |
logging.info("Fitting new model")
|
| 61 |
new_model.fit(docs, embeddings)
|
| 62 |
logging.info("End fitting new model")
|
|
|
|
| 63 |
if base_model is None:
|
| 64 |
return new_model, new_model
|
| 65 |
|
|
@@ -68,6 +142,8 @@ def fit_model(base_model, sentence_model, representation_model, docs, embeddings
|
|
| 68 |
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
| 69 |
logging.info("The following topics are newly found:")
|
| 70 |
logging.info(f"{new_topics}\n")
|
|
|
|
|
|
|
| 71 |
return updated_model, new_model
|
| 72 |
|
| 73 |
|
|
@@ -80,7 +156,6 @@ def generate_topics(dataset, config, split, column, nested_column):
|
|
| 80 |
limit = 1_000
|
| 81 |
chunk_size = 300
|
| 82 |
offset = 0
|
| 83 |
-
representation_model = KeyBERTInspired()
|
| 84 |
base_model = None
|
| 85 |
all_docs = []
|
| 86 |
all_reduced_embeddings = np.empty((0, 2))
|
|
@@ -93,22 +168,25 @@ def generate_topics(dataset, config, split, column, nested_column):
|
|
| 93 |
offset = offset + chunk_size
|
| 94 |
if not docs or offset >= limit:
|
| 95 |
break
|
| 96 |
-
base_model, _ = fit_model(
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
reduced_embeddings = UMAP(
|
| 100 |
n_neighbors=10, n_components=2, min_dist=0.0, metric="cosine"
|
| 101 |
).fit_transform(embeddings)
|
| 102 |
-
logging.info(f"Reduced embeddings shape: {reduced_embeddings.shape}")
|
| 103 |
|
| 104 |
all_docs.extend(docs)
|
| 105 |
all_reduced_embeddings = np.vstack((all_reduced_embeddings, reduced_embeddings))
|
| 106 |
-
logging.info(f"Stacked embeddings shape: {all_reduced_embeddings.shape}")
|
| 107 |
topics_info = base_model.get_topic_info()
|
| 108 |
topic_plot = base_model.visualize_documents(
|
| 109 |
-
all_docs, reduced_embeddings=all_reduced_embeddings
|
| 110 |
)
|
| 111 |
-
|
| 112 |
yield topics_info, topic_plot
|
| 113 |
|
| 114 |
logging.info("Finished processing all data")
|
|
@@ -116,47 +194,45 @@ def generate_topics(dataset, config, split, column, nested_column):
|
|
| 116 |
|
| 117 |
|
| 118 |
with gr.Blocks() as demo:
|
| 119 |
-
gr.Markdown(
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
)
|
| 132 |
-
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
|
| 133 |
-
split_dropdown = gr.Dropdown(label="Split", visible=False)
|
| 134 |
-
|
| 135 |
-
with gr.Accordion("Dataset preview", open=False):
|
| 136 |
-
|
| 137 |
-
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
|
| 138 |
-
def embed(name, subset, split):
|
| 139 |
-
html_code = f"""
|
| 140 |
-
<iframe
|
| 141 |
-
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
|
| 142 |
-
frameborder="0"
|
| 143 |
-
width="100%"
|
| 144 |
-
height="600px"
|
| 145 |
-
></iframe>
|
| 146 |
-
"""
|
| 147 |
-
return gr.HTML(value=html_code)
|
| 148 |
-
|
| 149 |
-
with gr.Row():
|
| 150 |
-
text_column_dropdown = gr.Dropdown(label="Text column name")
|
| 151 |
-
nested_text_column_dropdown = gr.Dropdown(
|
| 152 |
-
label="Nested text column name", visible=False
|
| 153 |
-
)
|
| 154 |
|
| 155 |
-
|
| 156 |
|
| 157 |
-
gr.Markdown("##
|
| 158 |
-
topics_df = gr.DataFrame(interactive=False, visible=True)
|
| 159 |
topics_plot = gr.Plot()
|
|
|
|
|
|
|
| 160 |
generate_button.click(
|
| 161 |
generate_topics,
|
| 162 |
inputs=[
|
|
|
|
| 6 |
from bertopic import BERTopic
|
| 7 |
import pandas as pd
|
| 8 |
import gradio as gr
|
| 9 |
+
from bertopic.representation import (
|
| 10 |
+
KeyBERTInspired,
|
| 11 |
+
MaximalMarginalRelevance,
|
| 12 |
+
TextGeneration,
|
| 13 |
+
)
|
| 14 |
from umap import UMAP
|
| 15 |
import numpy as np
|
| 16 |
+
from torch import cuda
|
| 17 |
+
from torch import bfloat16
|
| 18 |
+
from transformers import (
|
| 19 |
+
BitsAndBytesConfig,
|
| 20 |
+
AutoTokenizer,
|
| 21 |
+
AutoModelForCausalLM,
|
| 22 |
+
pipeline,
|
| 23 |
+
)
|
| 24 |
+
from prompts import system_prompt, example_prompt, main_prompt
|
| 25 |
+
from umap import UMAP
|
| 26 |
+
from hdbscan import HDBSCAN
|
| 27 |
|
| 28 |
# from cuml.cluster import HDBSCAN
|
| 29 |
# from cuml.manifold import UMAP
|
|
|
|
| 36 |
|
| 37 |
session = requests.Session()
|
| 38 |
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 39 |
+
keybert = KeyBERTInspired()
|
| 40 |
+
mmr = MaximalMarginalRelevance(diversity=0.3)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
| 44 |
+
device = f"cuda:{cuda.current_device()}" if cuda.is_available() else "cpu"
|
| 45 |
+
logging.info(device)
|
| 46 |
+
|
| 47 |
+
bnb_config = BitsAndBytesConfig(
|
| 48 |
+
load_in_4bit=True, # 4-bit quantization
|
| 49 |
+
bnb_4bit_quant_type="nf4", # Normalized float 4
|
| 50 |
+
bnb_4bit_use_double_quant=True, # Second quantization after the first
|
| 51 |
+
bnb_4bit_compute_dtype=bfloat16, # Computation type
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 55 |
+
|
| 56 |
+
# Llama 2 Model
|
| 57 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 58 |
+
model_id,
|
| 59 |
+
trust_remote_code=True,
|
| 60 |
+
quantization_config=bnb_config,
|
| 61 |
+
device_map="auto",
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
generator = pipeline(
|
| 65 |
+
model=model,
|
| 66 |
+
tokenizer=tokenizer,
|
| 67 |
+
task="text-generation",
|
| 68 |
+
temperature=0.1,
|
| 69 |
+
max_new_tokens=500,
|
| 70 |
+
repetition_penalty=1.1,
|
| 71 |
+
)
|
| 72 |
+
prompt = system_prompt + example_prompt + main_prompt
|
| 73 |
+
|
| 74 |
+
llama2 = TextGeneration(generator, prompt=prompt)
|
| 75 |
+
representation_model = {
|
| 76 |
+
# "KeyBERT": keybert,
|
| 77 |
+
"Llama2": llama2,
|
| 78 |
+
# "MMR": mmr,
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
# umap_model = UMAP(
|
| 82 |
+
# n_neighbors=15, n_components=5, min_dist=0.0, metric="cosine", random_state=42
|
| 83 |
+
# )
|
| 84 |
+
# hdbscan_model = HDBSCAN(
|
| 85 |
+
# min_cluster_size=150,
|
| 86 |
+
# metric="euclidean",
|
| 87 |
+
# cluster_selection_method="eom",
|
| 88 |
+
# prediction_data=True,
|
| 89 |
+
# )
|
| 90 |
+
# reduce_umap_model = UMAP(
|
| 91 |
+
# n_neighbors=15, n_components=2, min_dist=0.0, metric="cosine", random_state=42
|
| 92 |
+
# )
|
| 93 |
|
| 94 |
|
| 95 |
def get_parquet_urls(dataset, config, split):
|
|
|
|
| 113 |
|
| 114 |
# @spaces.GPU
|
| 115 |
def calculate_embeddings(docs):
|
| 116 |
+
return sentence_model.encode(docs, show_progress_bar=True, batch_size=100)
|
|
|
|
|
|
|
| 117 |
|
| 118 |
|
| 119 |
# @spaces.GPU
|
| 120 |
+
def fit_model(base_model, docs, embeddings):
|
| 121 |
new_model = BERTopic(
|
| 122 |
"english",
|
| 123 |
+
# Sub-models
|
| 124 |
embedding_model=sentence_model,
|
| 125 |
+
# umap_model=umap_model,
|
| 126 |
+
# hdbscan_model=hdbscan_model,
|
| 127 |
representation_model=representation_model,
|
| 128 |
+
# Hyperparameters
|
| 129 |
+
top_n_words=10,
|
| 130 |
+
verbose=True,
|
| 131 |
+
min_topic_size=15,
|
| 132 |
)
|
| 133 |
logging.info("Fitting new model")
|
| 134 |
new_model.fit(docs, embeddings)
|
| 135 |
logging.info("End fitting new model")
|
| 136 |
+
|
| 137 |
if base_model is None:
|
| 138 |
return new_model, new_model
|
| 139 |
|
|
|
|
| 142 |
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
| 143 |
logging.info("The following topics are newly found:")
|
| 144 |
logging.info(f"{new_topics}\n")
|
| 145 |
+
# updated_model.set_topic_labels(updated_model.topic_labels_)
|
| 146 |
+
|
| 147 |
return updated_model, new_model
|
| 148 |
|
| 149 |
|
|
|
|
| 156 |
limit = 1_000
|
| 157 |
chunk_size = 300
|
| 158 |
offset = 0
|
|
|
|
| 159 |
base_model = None
|
| 160 |
all_docs = []
|
| 161 |
all_reduced_embeddings = np.empty((0, 2))
|
|
|
|
| 168 |
offset = offset + chunk_size
|
| 169 |
if not docs or offset >= limit:
|
| 170 |
break
|
| 171 |
+
base_model, _ = fit_model(base_model, docs, embeddings)
|
| 172 |
+
llama2_labels = [
|
| 173 |
+
label[0][0].split("\n")[0]
|
| 174 |
+
for label in base_model.get_topics(full=True)["Llama2"].values()
|
| 175 |
+
]
|
| 176 |
+
logging.info(f"Topics: {llama2_labels}")
|
| 177 |
+
base_model.set_topic_labels(llama2_labels)
|
| 178 |
+
|
| 179 |
reduced_embeddings = UMAP(
|
| 180 |
n_neighbors=10, n_components=2, min_dist=0.0, metric="cosine"
|
| 181 |
).fit_transform(embeddings)
|
|
|
|
| 182 |
|
| 183 |
all_docs.extend(docs)
|
| 184 |
all_reduced_embeddings = np.vstack((all_reduced_embeddings, reduced_embeddings))
|
|
|
|
| 185 |
topics_info = base_model.get_topic_info()
|
| 186 |
topic_plot = base_model.visualize_documents(
|
| 187 |
+
all_docs, reduced_embeddings=all_reduced_embeddings, custom_labels=True
|
| 188 |
)
|
| 189 |
+
logging.info(f"Topics for merged model: {base_model.topic_labels_}")
|
| 190 |
yield topics_info, topic_plot
|
| 191 |
|
| 192 |
logging.info("Finished processing all data")
|
|
|
|
| 194 |
|
| 195 |
|
| 196 |
with gr.Blocks() as demo:
|
| 197 |
+
gr.Markdown("# 💠 Dataset Topic Discovery 🔭")
|
| 198 |
+
gr.Markdown("## Select dataset and text column")
|
| 199 |
+
with gr.Accordion("Data details", open=True):
|
| 200 |
+
with gr.Row():
|
| 201 |
+
with gr.Column(scale=3):
|
| 202 |
+
dataset_name = HuggingfaceHubSearch(
|
| 203 |
+
label="Hub Dataset ID",
|
| 204 |
+
placeholder="Search for dataset id on Huggingface",
|
| 205 |
+
search_type="dataset",
|
| 206 |
+
)
|
| 207 |
+
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
|
| 208 |
+
split_dropdown = gr.Dropdown(label="Split", visible=False)
|
| 209 |
+
|
| 210 |
+
with gr.Accordion("Dataset preview", open=False):
|
| 211 |
+
|
| 212 |
+
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
|
| 213 |
+
def embed(name, subset, split):
|
| 214 |
+
html_code = f"""
|
| 215 |
+
<iframe
|
| 216 |
+
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
|
| 217 |
+
frameborder="0"
|
| 218 |
+
width="100%"
|
| 219 |
+
height="600px"
|
| 220 |
+
></iframe>
|
| 221 |
+
"""
|
| 222 |
+
return gr.HTML(value=html_code)
|
| 223 |
+
|
| 224 |
+
with gr.Row():
|
| 225 |
+
text_column_dropdown = gr.Dropdown(label="Text column name")
|
| 226 |
+
nested_text_column_dropdown = gr.Dropdown(
|
| 227 |
+
label="Nested text column name", visible=False
|
| 228 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
generate_button = gr.Button("Generate Notebook", variant="primary")
|
| 231 |
|
| 232 |
+
gr.Markdown("## Datamap")
|
|
|
|
| 233 |
topics_plot = gr.Plot()
|
| 234 |
+
with gr.Accordion("Topics Info", open=False):
|
| 235 |
+
topics_df = gr.DataFrame(interactive=False, visible=True)
|
| 236 |
generate_button.click(
|
| 237 |
generate_topics,
|
| 238 |
inputs=[
|
prompts.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
system_prompt = """
|
| 2 |
+
<s>[INST] <<SYS>>
|
| 3 |
+
You are a helpful, respectful and honest assistant for labeling topics.
|
| 4 |
+
<</SYS>>
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
example_prompt = """
|
| 8 |
+
I have a topic that contains the following documents:
|
| 9 |
+
- Traditional diets in most cultures were primarily plant-based with a little meat on top, but with the rise of industrial style meat production and factory farming, meat has become a staple food.
|
| 10 |
+
- Meat, but especially beef, is the word food in terms of emissions.
|
| 11 |
+
- Eating meat doesn't make you a bad person, not eating meat doesn't make you a good one.
|
| 12 |
+
|
| 13 |
+
The topic is described by the following keywords: 'meat, beef, eat, eating, emissions, steak, food, health, processed, chicken'.
|
| 14 |
+
|
| 15 |
+
Based on the information about the topic above, please create a short label of this topic. Make sure you to only return the label and nothing more.
|
| 16 |
+
|
| 17 |
+
[/INST] Environmental impacts of eating meat
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
main_prompt = """
|
| 21 |
+
[INST]
|
| 22 |
+
I have a topic that contains the following documents:
|
| 23 |
+
[DOCUMENTS]
|
| 24 |
+
|
| 25 |
+
The topic is described by the following keywords: '[KEYWORDS]'.
|
| 26 |
+
|
| 27 |
+
Based on the information about the topic above, please create a short label of this topic. Make sure you to only return the label and nothing more.
|
| 28 |
+
[/INST]
|
| 29 |
+
"""
|