File size: 13,842 Bytes
dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 8cc3acd dbf2148 8cc3acd dbf2148 8cc3acd dbf2148 8cc3acd dbf2148 8cc3acd dbf2148 deb8dee 8cc3acd deb8dee 8cc3acd deb8dee 8cc3acd dbf2148 8cc3acd deb8dee dbf2148 8cc3acd dbf2148 8cc3acd dbf2148 8cc3acd dbf2148 8cc3acd dbf2148 8cc3acd deb8dee 8cc3acd dbf2148 8cc3acd dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee dbf2148 deb8dee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import numpy as np
import faiss
from typing import List, Dict, Optional
from sentence_transformers import SentenceTransformer
from models.schemas import RAGSearchResult
from config.settings import settings
from core.multilingual_manager import MultilingualManager
class EnhancedRAGSystem:
def __init__(self):
self.documents: List[str] = []
self.metadatas: List[Dict] = []
self.embeddings: Optional[np.ndarray] = None
self.index: Optional[faiss.Index] = None
# Multilingual support
self.multilingual_manager = MultilingualManager()
self.current_dimension = settings.EMBEDDING_DIMENSION
self._initialize_sample_data() # SỬA TÊN HÀM
def _initialize_sample_data(self): # SỬA TÊN HÀM
"""Khởi tạo dữ liệu mẫu"""
# Vietnamese sample data
vietnamese_data = [
"Rau xanh cung cấp nhiều vitamin và chất xơ tốt cho sức khỏe",
"Trái cây tươi chứa nhiều vitamin C và chất chống oxy hóa",
"Cá hồi giàu omega-3 tốt cho tim mạch và trí não",
"Nước rất quan trọng cho cơ thể, nên uống ít nhất 2 lít mỗi ngày",
"Hà Nội là thủ đô của Việt Nam, nằm ở miền Bắc",
"Thành phố Hồ Chí Minh là thành phố lớn nhất Việt Nam",
"Việt Nam có khí hậu nhiệt đới gió mùa với 4 mùa rõ rệt"
]
# English sample data
english_data = [
"Green vegetables provide many vitamins and fiber that are good for health",
"Fresh fruits contain lots of vitamin C and antioxidants",
"Salmon is rich in omega-3 which is good for heart and brain",
"Water is very important for the body, should drink at least 2 liters per day",
"London is the capital of England and the United Kingdom",
"New York City is the most populous city in the United States",
"The United States has diverse climate zones from tropical to arctic"
]
# Vietnamese metadata - SỬA LỖI SYNTAX
vietnamese_metadatas = [
{"type": "nutrition", "source": "sample", "language": "vi"},
{"type": "nutrition", "source": "sample", "language": "vi"},
{"type": "nutrition", "source": "sample", "language": "vi"},
{"type": "health", "source": "sample", "language": "vi"},
{"type": "geography", "source": "sample", "language": "vi"},
{"type": "geography", "source": "sample", "language": "vi"},
{"type": "geography", "source": "sample", "language": "vi"}
]
# English metadata - SỬA LỖI SYNTAX
english_metadatas = [
{"type": "nutrition", "source": "sample", "language": "en"},
{"type": "nutrition", "source": "sample", "language": "en"},
{"type": "nutrition", "source": "sample", "language": "en"},
{"type": "health", "source": "sample", "language": "en"},
{"type": "geography", "source": "sample", "language": "en"},
{"type": "geography", "source": "sample", "language": "en"},
{"type": "geography", "source": "sample", "language": "en"}
]
# Add documents with language metadata
self.add_documents(vietnamese_data, vietnamese_metadatas)
self.add_documents(english_data, english_metadatas)
def add_documents(self, documents: List[str], metadatas: List[Dict] = None):
"""Thêm documents vào database - ĐÃ SỬA LỖI"""
print(f"🔄 RAG System: Bắt đầu thêm {len(documents)} documents...")
if not documents:
print("❌ RAG System: Không có documents để thêm")
return
# Ensure metadatas has the same length as documents
if metadatas is None:
metadatas = [{} for _ in documents]
print("📝 Tạo metadata mặc định")
elif len(metadatas) != len(documents):
print(f"⚠️ Metadata length mismatch: {len(metadatas)} vs {len(documents)}")
# Fix metadata length
new_metadatas = []
for i in range(len(documents)):
if i < len(metadatas):
new_metadatas.append(metadatas[i])
else:
new_metadatas.append({"source": "upload", "language": "vi"})
metadatas = new_metadatas
# Filter valid documents
valid_documents = []
valid_metadatas = []
for i, doc in enumerate(documents):
if doc and isinstance(doc, str) and len(doc.strip()) > 5: # At least 5 characters
valid_documents.append(doc.strip())
valid_metadatas.append(metadatas[i] if i < len(metadatas) else {})
else:
print(f"⚠️ Bỏ qua document {i}: không hợp lệ")
print(f"📊 Documents hợp lệ: {len(valid_documents)}/{len(documents)}")
if not valid_documents:
print("❌ Không có documents hợp lệ để thêm")
return
# Create embeddings
new_embeddings_list = []
successful_embeddings = 0
for i, doc in enumerate(valid_documents):
try:
language = valid_metadatas[i].get('language', 'vi')
embedding_model = self.multilingual_manager.get_embedding_model(language)
if embedding_model is None:
print(f"⚠️ Không có embedding model cho document {i}")
continue
# Create embedding
doc_embedding = embedding_model.encode([doc])
new_embeddings_list.append(doc_embedding[0])
successful_embeddings += 1
except Exception as e:
print(f"❌ Lỗi embedding document {i}: {e}")
print(f"📊 Embeddings thành công: {successful_embeddings}/{len(valid_documents)}")
if not new_embeddings_list:
print("❌ Không tạo được embeddings nào")
return
# Convert to numpy array
try:
new_embeddings = np.array(new_embeddings_list)
print(f"✅ Embedding matrix shape: {new_embeddings.shape}")
except Exception as e:
print(f"❌ Lỗi tạo embedding matrix: {e}")
return
# Handle existing embeddings
old_doc_count = len(self.documents)
if self.embeddings is None:
# First time initialization
self.embeddings = new_embeddings
self.documents = valid_documents
self.metadatas = valid_metadatas
print("✅ Khởi tạo RAG system lần đầu")
else:
# Append to existing
try:
# Check dimension compatibility
if self.embeddings.shape[1] != new_embeddings.shape[1]:
print(f"⚠️ Dimension mismatch: {self.embeddings.shape[1]} vs {new_embeddings.shape[1]}")
print("🔄 Tạo system mới do dimension không khớp")
self.embeddings = new_embeddings
self.documents = valid_documents
self.metadatas = valid_metadatas
else:
# Compatible dimensions, append
self.embeddings = np.vstack([self.embeddings, new_embeddings])
self.documents.extend(valid_documents)
self.metadatas.extend(valid_metadatas)
print("✅ Đã thêm vào system hiện có")
except Exception as e:
print(f"❌ Lỗi khi thêm vào system: {e}")
return
# Update FAISS index
self._update_faiss_index()
new_doc_count = len(self.documents)
print(f"🎉 THÀNH CÔNG: Đã thêm {new_doc_count - old_doc_count} documents mới")
print(f"📊 Tổng documents: {new_doc_count}")
def _update_faiss_index(self):
"""Cập nhật FAISS index với embeddings hiện tại"""
if self.embeddings is None or len(self.embeddings) == 0:
return
try:
dimension = self.embeddings.shape[1]
self.index = faiss.IndexFlatIP(dimension)
# Normalize embeddings for cosine similarity
faiss.normalize_L2(self.embeddings)
self.index.add(self.embeddings.astype(np.float32))
print(f"✅ Đã cập nhật FAISS index với dimension {dimension}")
except Exception as e:
print(f"❌ Lỗi cập nhật FAISS index: {e}")
def semantic_search(self, query: str, top_k: int = None) -> List[RAGSearchResult]:
"""Tìm kiếm ngữ nghĩa với model phù hợp theo ngôn ngữ"""
if top_k is None:
top_k = settings.TOP_K_RESULTS
if not self.documents or self.index is None:
return self._fallback_keyword_search(query, top_k)
# Detect query language and get appropriate model
query_language = self.multilingual_manager.detect_language(query)
embedding_model = self.multilingual_manager.get_embedding_model(query_language)
if embedding_model is None:
return self._fallback_keyword_search(query, top_k)
try:
# Encode query with appropriate model
query_embedding = embedding_model.encode([query])
# Normalize query embedding for cosine similarity
faiss.normalize_L2(query_embedding)
# Search in FAISS index
similarities, indices = self.index.search(
query_embedding.astype(np.float32),
min(top_k, len(self.documents))
)
results = []
for i, (similarity, idx) in enumerate(zip(similarities[0], indices[0])):
if idx < len(self.documents):
results.append(RAGSearchResult(
id=str(idx),
text=self.documents[idx],
similarity=float(similarity),
metadata=self.metadatas[idx] if idx < len(self.metadatas) else {}
))
# Filter results by language relevance
filtered_results = self._filter_by_language_relevance(results, query_language)
print(f"🔍 Tìm kiếm '{query[:50]}...' (ngôn ngữ: {query_language}) - Tìm thấy {len(filtered_results)} kết quả")
return filtered_results
except Exception as e:
print(f"❌ Lỗi tìm kiếm ngữ nghĩa: {e}")
return self._fallback_keyword_search(query, top_k)
def _filter_by_language_relevance(self, results: List[RAGSearchResult], query_language: str) -> List[RAGSearchResult]:
"""Lọc kết quả theo độ liên quan ngôn ngữ"""
if not results:
return results
# Boost scores for documents in the same language
for result in results:
doc_language = result.metadata.get('language', 'vi')
if doc_language == query_language:
# Boost similarity score for same language documents
result.similarity = min(result.similarity * 1.2, 1.0)
# Re-sort by updated similarity scores
results.sort(key=lambda x: x.similarity, reverse=True)
return results
def _fallback_keyword_search(self, query: str, top_k: int) -> List[RAGSearchResult]:
"""Tìm kiếm dự phòng dựa trên từ khóa"""
query_lower = query.lower()
results = []
for i, doc in enumerate(self.documents):
score = 0
doc_language = self.metadatas[i].get('language', 'vi') if i < len(self.metadatas) else 'vi'
query_language = self.multilingual_manager.detect_language(query)
# Language matching bonus
if doc_language == query_language:
score += 0.5
# Keyword matching
for word in query_lower.split():
if len(word) > 2 and word in doc.lower():
score += 1
if score > 0:
results.append(RAGSearchResult(
id=str(i),
text=doc,
similarity=min(score / 5, 1.0),
metadata=self.metadatas[i] if i < len(self.metadatas) else {}
))
results.sort(key=lambda x: x.similarity, reverse=True)
return results[:top_k]
def get_collection_stats(self) -> Dict:
"""Lấy thống kê collection với thông tin đa ngôn ngữ"""
language_stats = {}
for metadata in self.metadatas:
lang = metadata.get('language', 'unknown')
language_stats[lang] = language_stats.get(lang, 0) + 1
return {
'total_documents': len(self.documents),
'embedding_count': len(self.embeddings) if self.embeddings is not None else 0,
'embedding_dimension': self.current_dimension,
'language_distribution': language_stats,
'name': 'multilingual_rag_system',
'status': 'active',
'has_embeddings': self.embeddings is not None
}
|