Update core/silero_vad.py
Browse files- core/silero_vad.py +58 -38
core/silero_vad.py
CHANGED
|
@@ -17,8 +17,8 @@ class SileroVAD:
|
|
| 17 |
self.is_streaming = False
|
| 18 |
self.speech_callback = None
|
| 19 |
self.audio_buffer = []
|
| 20 |
-
self.speech_buffer = []
|
| 21 |
-
self.state = "silence"
|
| 22 |
self.speech_start_time = 0
|
| 23 |
self.last_voice_time = 0
|
| 24 |
|
|
@@ -32,7 +32,11 @@ class SileroVAD:
|
|
| 32 |
|
| 33 |
# Buffer cho pre-speech
|
| 34 |
self.pre_speech_samples = int(self.pre_speech_buffer * self.sample_rate)
|
| 35 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
self._initialize_model()
|
| 38 |
|
|
@@ -61,11 +65,13 @@ class SileroVAD:
|
|
| 61 |
self.speech_callback = speech_callback
|
| 62 |
self.audio_buffer = []
|
| 63 |
self.speech_buffer = []
|
| 64 |
-
self.
|
|
|
|
|
|
|
| 65 |
self.state = "silence"
|
| 66 |
self.speech_start_time = 0
|
| 67 |
self.last_voice_time = 0
|
| 68 |
-
print("🎙️ Bắt đầu VAD streaming với
|
| 69 |
return True
|
| 70 |
|
| 71 |
def stop_stream(self):
|
|
@@ -74,23 +80,30 @@ class SileroVAD:
|
|
| 74 |
self.speech_callback = None
|
| 75 |
self.audio_buffer = []
|
| 76 |
self.speech_buffer = []
|
| 77 |
-
self.
|
|
|
|
|
|
|
| 78 |
self.state = "silence"
|
| 79 |
print("🛑 Đã dừng VAD streaming")
|
| 80 |
|
| 81 |
def process_stream(self, audio_chunk: np.ndarray, sample_rate: int):
|
| 82 |
-
"""Xử lý audio chunk với VAD
|
| 83 |
if not self.is_streaming or self.model is None:
|
| 84 |
return
|
| 85 |
|
| 86 |
try:
|
| 87 |
-
|
| 88 |
if sample_rate != self.sample_rate:
|
| 89 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 90 |
|
|
|
|
| 91 |
self.audio_buffer.extend(audio_chunk)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
while len(self.audio_buffer) >= self.chunk_size:
|
| 95 |
chunk = self.audio_buffer[:self.chunk_size]
|
| 96 |
self._process_vad_chunk(np.array(chunk))
|
|
@@ -100,7 +113,7 @@ class SileroVAD:
|
|
| 100 |
print(f"❌ Lỗi xử lý VAD: {e}")
|
| 101 |
|
| 102 |
def _process_vad_chunk(self, audio_chunk: np.ndarray):
|
| 103 |
-
"""Xử lý VAD cho một chunk
|
| 104 |
current_time = time.time()
|
| 105 |
|
| 106 |
# Chuẩn hóa audio
|
|
@@ -109,25 +122,28 @@ class SileroVAD:
|
|
| 109 |
# Lấy xác suất speech
|
| 110 |
speech_prob = self._get_speech_probability(audio_chunk)
|
| 111 |
|
| 112 |
-
# Logic state machine cải tiến
|
| 113 |
if self.state == "silence":
|
| 114 |
if speech_prob > self.speech_threshold:
|
| 115 |
print("🎤 Bắt đầu phát hiện speech")
|
| 116 |
self.state = "speech"
|
| 117 |
self.speech_start_time = current_time
|
| 118 |
self.last_voice_time = current_time
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 122 |
else:
|
| 123 |
-
# Lưu pre-speech buffer
|
| 124 |
-
self.
|
| 125 |
-
if len(self.
|
| 126 |
-
self.
|
| 127 |
|
| 128 |
elif self.state == "speech":
|
| 129 |
-
#
|
| 130 |
-
self.
|
|
|
|
| 131 |
|
| 132 |
# Cập nhật thời gian voice cuối cùng
|
| 133 |
if speech_prob > self.speech_threshold:
|
|
@@ -137,9 +153,7 @@ class SileroVAD:
|
|
| 137 |
silence_duration = current_time - self.last_voice_time
|
| 138 |
speech_duration = current_time - self.speech_start_time
|
| 139 |
|
| 140 |
-
#
|
| 141 |
-
|
| 142 |
-
# 1. User nói ngắn (dưới min_speech) nhưng đã im lặng đủ lâu -> XỬ LÝ NGAY
|
| 143 |
is_short_response = speech_duration < self.min_speech_duration
|
| 144 |
is_long_silence_after_short = silence_duration >= self.min_silence_duration
|
| 145 |
|
|
@@ -147,31 +161,30 @@ class SileroVAD:
|
|
| 147 |
print(f"🎯 Phát hiện phản hồi ngắn: {speech_duration:.2f}s, im lặng: {silence_duration:.2f}s")
|
| 148 |
self._finalize_speech()
|
| 149 |
|
| 150 |
-
# 2. User nói đủ dài VÀ im lặng đủ lâu -> XỬ LÝ BÌNH THƯỜNG
|
| 151 |
elif (speech_duration >= self.min_speech_duration and
|
| 152 |
silence_duration >= self.min_silence_duration):
|
| 153 |
print(f"🎯 Kết thúc speech dài: {speech_duration:.2f}s")
|
| 154 |
self._finalize_speech()
|
| 155 |
|
| 156 |
-
# 3. Speech quá dài (timeout) -> XỬ LÝ DÙ ĐANG NÓI
|
| 157 |
elif speech_duration > settings.MAX_AUDIO_DURATION:
|
| 158 |
print(f"⏰ Speech timeout ({speech_duration:.2f}s) - xử lý dù đang nói")
|
| 159 |
self._finalize_speech()
|
| 160 |
|
| 161 |
elif self.state == "processing":
|
| 162 |
-
#
|
| 163 |
-
|
|
|
|
| 164 |
def _finalize_speech(self):
|
| 165 |
-
"""Hoàn thành xử lý speech segment"""
|
| 166 |
-
if not self.
|
| 167 |
-
self.
|
| 168 |
return
|
| 169 |
|
| 170 |
-
# Chuyển sang state processing
|
| 171 |
self.state = "processing"
|
| 172 |
|
| 173 |
-
#
|
| 174 |
-
speech_audio = np.array(self.
|
| 175 |
|
| 176 |
# Gọi callback trong thread riêng
|
| 177 |
if self.speech_callback:
|
|
@@ -181,11 +194,19 @@ class SileroVAD:
|
|
| 181 |
daemon=True
|
| 182 |
).start()
|
| 183 |
|
| 184 |
-
#
|
| 185 |
-
self.
|
| 186 |
-
self.
|
| 187 |
|
| 188 |
-
# Quay lại state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
self.state = "silence"
|
| 190 |
|
| 191 |
def _normalize_audio(self, audio: np.ndarray) -> np.ndarray:
|
|
@@ -232,7 +253,6 @@ class SileroVAD:
|
|
| 232 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 233 |
audio_chunk = self._normalize_audio(audio_chunk)
|
| 234 |
|
| 235 |
-
# Kiểm tra multiple chunks
|
| 236 |
chunk_size = 512
|
| 237 |
speech_probs = []
|
| 238 |
|
|
|
|
| 17 |
self.is_streaming = False
|
| 18 |
self.speech_callback = None
|
| 19 |
self.audio_buffer = []
|
| 20 |
+
self.speech_buffer = []
|
| 21 |
+
self.state = "silence"
|
| 22 |
self.speech_start_time = 0
|
| 23 |
self.last_voice_time = 0
|
| 24 |
|
|
|
|
| 32 |
|
| 33 |
# Buffer cho pre-speech
|
| 34 |
self.pre_speech_samples = int(self.pre_speech_buffer * self.sample_rate)
|
| 35 |
+
self.pre_speech_buffer_data = []
|
| 36 |
+
|
| 37 |
+
# Double buffer system để tránh mất dữ liệu
|
| 38 |
+
self.active_speech_buffer = []
|
| 39 |
+
self.backup_speech_buffer = []
|
| 40 |
|
| 41 |
self._initialize_model()
|
| 42 |
|
|
|
|
| 65 |
self.speech_callback = speech_callback
|
| 66 |
self.audio_buffer = []
|
| 67 |
self.speech_buffer = []
|
| 68 |
+
self.pre_speech_buffer_data = []
|
| 69 |
+
self.active_speech_buffer = []
|
| 70 |
+
self.backup_speech_buffer = []
|
| 71 |
self.state = "silence"
|
| 72 |
self.speech_start_time = 0
|
| 73 |
self.last_voice_time = 0
|
| 74 |
+
print("🎙️ Bắt đầu VAD streaming với double buffer system...")
|
| 75 |
return True
|
| 76 |
|
| 77 |
def stop_stream(self):
|
|
|
|
| 80 |
self.speech_callback = None
|
| 81 |
self.audio_buffer = []
|
| 82 |
self.speech_buffer = []
|
| 83 |
+
self.pre_speech_buffer_data = []
|
| 84 |
+
self.active_speech_buffer = []
|
| 85 |
+
self.backup_speech_buffer = []
|
| 86 |
self.state = "silence"
|
| 87 |
print("🛑 Đã dừng VAD streaming")
|
| 88 |
|
| 89 |
def process_stream(self, audio_chunk: np.ndarray, sample_rate: int):
|
| 90 |
+
"""Xử lý audio chunk với VAD và double buffer"""
|
| 91 |
if not self.is_streaming or self.model is None:
|
| 92 |
return
|
| 93 |
|
| 94 |
try:
|
| 95 |
+
# Resample nếu cần
|
| 96 |
if sample_rate != self.sample_rate:
|
| 97 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 98 |
|
| 99 |
+
# Thêm vào audio buffer
|
| 100 |
self.audio_buffer.extend(audio_chunk)
|
| 101 |
+
|
| 102 |
+
# Đồng thời thêm vào backup buffer để tránh mất dữ liệu
|
| 103 |
+
if self.state == "speech":
|
| 104 |
+
self.backup_speech_buffer.extend(audio_chunk)
|
| 105 |
|
| 106 |
+
# Xử lý VAD theo chunks
|
| 107 |
while len(self.audio_buffer) >= self.chunk_size:
|
| 108 |
chunk = self.audio_buffer[:self.chunk_size]
|
| 109 |
self._process_vad_chunk(np.array(chunk))
|
|
|
|
| 113 |
print(f"❌ Lỗi xử lý VAD: {e}")
|
| 114 |
|
| 115 |
def _process_vad_chunk(self, audio_chunk: np.ndarray):
|
| 116 |
+
"""Xử lý VAD cho một chunk với double buffer"""
|
| 117 |
current_time = time.time()
|
| 118 |
|
| 119 |
# Chuẩn hóa audio
|
|
|
|
| 122 |
# Lấy xác suất speech
|
| 123 |
speech_prob = self._get_speech_probability(audio_chunk)
|
| 124 |
|
|
|
|
| 125 |
if self.state == "silence":
|
| 126 |
if speech_prob > self.speech_threshold:
|
| 127 |
print("🎤 Bắt đầu phát hiện speech")
|
| 128 |
self.state = "speech"
|
| 129 |
self.speech_start_time = current_time
|
| 130 |
self.last_voice_time = current_time
|
| 131 |
+
|
| 132 |
+
# Khởi tạo cả active và backup buffer
|
| 133 |
+
self.active_speech_buffer = self.pre_speech_buffer_data.copy()
|
| 134 |
+
self.active_speech_buffer.extend(audio_chunk)
|
| 135 |
+
self.backup_speech_buffer = self.active_speech_buffer.copy()
|
| 136 |
+
|
| 137 |
else:
|
| 138 |
+
# Lưu pre-speech buffer
|
| 139 |
+
self.pre_speech_buffer_data.extend(audio_chunk)
|
| 140 |
+
if len(self.pre_speech_buffer_data) > self.pre_speech_samples:
|
| 141 |
+
self.pre_speech_buffer_data = self.pre_speech_buffer_data[-self.pre_speech_samples:]
|
| 142 |
|
| 143 |
elif self.state == "speech":
|
| 144 |
+
# Thêm vào cả hai buffers
|
| 145 |
+
self.active_speech_buffer.extend(audio_chunk)
|
| 146 |
+
self.backup_speech_buffer.extend(audio_chunk)
|
| 147 |
|
| 148 |
# Cập nhật thời gian voice cuối cùng
|
| 149 |
if speech_prob > self.speech_threshold:
|
|
|
|
| 153 |
silence_duration = current_time - self.last_voice_time
|
| 154 |
speech_duration = current_time - self.speech_start_time
|
| 155 |
|
| 156 |
+
# Logic kết thúc thông minh
|
|
|
|
|
|
|
| 157 |
is_short_response = speech_duration < self.min_speech_duration
|
| 158 |
is_long_silence_after_short = silence_duration >= self.min_silence_duration
|
| 159 |
|
|
|
|
| 161 |
print(f"🎯 Phát hiện phản hồi ngắn: {speech_duration:.2f}s, im lặng: {silence_duration:.2f}s")
|
| 162 |
self._finalize_speech()
|
| 163 |
|
|
|
|
| 164 |
elif (speech_duration >= self.min_speech_duration and
|
| 165 |
silence_duration >= self.min_silence_duration):
|
| 166 |
print(f"🎯 Kết thúc speech dài: {speech_duration:.2f}s")
|
| 167 |
self._finalize_speech()
|
| 168 |
|
|
|
|
| 169 |
elif speech_duration > settings.MAX_AUDIO_DURATION:
|
| 170 |
print(f"⏰ Speech timeout ({speech_duration:.2f}s) - xử lý dù đang nói")
|
| 171 |
self._finalize_speech()
|
| 172 |
|
| 173 |
elif self.state == "processing":
|
| 174 |
+
# Trong khi đang xử lý, vẫn tiếp tục ghi vào backup buffer
|
| 175 |
+
self.backup_speech_buffer.extend(audio_chunk)
|
| 176 |
+
|
| 177 |
def _finalize_speech(self):
|
| 178 |
+
"""Hoàn thành xử lý speech segment với buffer switching"""
|
| 179 |
+
if not self.active_speech_buffer:
|
| 180 |
+
self._reset_buffers()
|
| 181 |
return
|
| 182 |
|
| 183 |
+
# Chuyển sang state processing
|
| 184 |
self.state = "processing"
|
| 185 |
|
| 186 |
+
# Sử dụng active buffer cho xử lý hiện tại
|
| 187 |
+
speech_audio = np.array(self.active_speech_buffer, dtype=np.float32)
|
| 188 |
|
| 189 |
# Gọi callback trong thread riêng
|
| 190 |
if self.speech_callback:
|
|
|
|
| 194 |
daemon=True
|
| 195 |
).start()
|
| 196 |
|
| 197 |
+
# Chuẩn bị cho lần tiếp theo: chuyển backup buffer thành active buffer
|
| 198 |
+
self.active_speech_buffer = self.backup_speech_buffer.copy()
|
| 199 |
+
self.backup_speech_buffer = []
|
| 200 |
|
| 201 |
+
# Quay lại state speech để tiếp tục nhận dữ liệu
|
| 202 |
+
self.state = "speech"
|
| 203 |
+
self.last_voice_time = time.time()
|
| 204 |
+
|
| 205 |
+
def _reset_buffers(self):
|
| 206 |
+
"""Reset tất cả buffers"""
|
| 207 |
+
self.active_speech_buffer = []
|
| 208 |
+
self.backup_speech_buffer = []
|
| 209 |
+
self.audio_buffer = []
|
| 210 |
self.state = "silence"
|
| 211 |
|
| 212 |
def _normalize_audio(self, audio: np.ndarray) -> np.ndarray:
|
|
|
|
| 253 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 254 |
audio_chunk = self._normalize_audio(audio_chunk)
|
| 255 |
|
|
|
|
| 256 |
chunk_size = 512
|
| 257 |
speech_probs = []
|
| 258 |
|