Update core/silero_vad.py
Browse files- core/silero_vad.py +70 -24
core/silero_vad.py
CHANGED
|
@@ -2,29 +2,63 @@ import torch
|
|
| 2 |
import numpy as np
|
| 3 |
from typing import Optional, Callable
|
| 4 |
from config.settings import settings
|
|
|
|
| 5 |
|
| 6 |
class SileroVAD:
|
| 7 |
def __init__(self):
|
| 8 |
self.model = None
|
| 9 |
-
self.sample_rate = 16000
|
| 10 |
self.is_streaming = False
|
| 11 |
self.speech_callback = None
|
| 12 |
self.audio_buffer = []
|
| 13 |
self._initialize_model()
|
| 14 |
|
| 15 |
def _initialize_model(self):
|
| 16 |
-
"""Khởi tạo Silero VAD model"""
|
| 17 |
try:
|
| 18 |
-
print("🔄 Đang tải Silero VAD model...")
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
)
|
| 23 |
-
|
| 24 |
-
self.model.eval()
|
| 25 |
print("✅ Đã tải Silero VAD model thành công")
|
|
|
|
| 26 |
except Exception as e:
|
| 27 |
print(f"❌ Lỗi tải Silero VAD model: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
self.model = None
|
| 29 |
|
| 30 |
def start_stream(self, speech_callback: Callable):
|
|
@@ -52,16 +86,16 @@ class SileroVAD:
|
|
| 52 |
return
|
| 53 |
|
| 54 |
try:
|
| 55 |
-
# Resample nếu cần
|
| 56 |
if sample_rate != self.sample_rate:
|
| 57 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 58 |
|
| 59 |
# Thêm vào buffer
|
| 60 |
self.audio_buffer.extend(audio_chunk)
|
| 61 |
|
| 62 |
-
# Xử lý khi buffer đủ lớn (1 giây
|
| 63 |
buffer_duration = len(self.audio_buffer) / self.sample_rate
|
| 64 |
-
if buffer_duration >= 1.0:
|
| 65 |
self._process_buffer()
|
| 66 |
|
| 67 |
except Exception as e:
|
|
@@ -70,7 +104,6 @@ class SileroVAD:
|
|
| 70 |
def _process_buffer(self):
|
| 71 |
"""Xử lý buffer audio với Silero VAD"""
|
| 72 |
try:
|
| 73 |
-
# Silero VAD làm việc tốt với chunk 1 giây
|
| 74 |
chunk_size = self.sample_rate # 1 giây
|
| 75 |
if len(self.audio_buffer) < chunk_size:
|
| 76 |
return
|
|
@@ -80,10 +113,15 @@ class SileroVAD:
|
|
| 80 |
|
| 81 |
# Chuẩn hóa audio cho Silero
|
| 82 |
if audio_chunk.dtype != np.float32:
|
| 83 |
-
audio_chunk = audio_chunk.astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
# Chuyển thành tensor
|
| 86 |
-
audio_tensor = torch.from_numpy(audio_chunk).unsqueeze(0)
|
| 87 |
|
| 88 |
# Phát hiện speech với Silero VAD
|
| 89 |
with torch.no_grad():
|
|
@@ -91,7 +129,7 @@ class SileroVAD:
|
|
| 91 |
|
| 92 |
print(f"🎯 Silero VAD speech probability: {speech_prob:.3f}")
|
| 93 |
|
| 94 |
-
# Ngưỡng phát hiện speech
|
| 95 |
if speech_prob > settings.VAD_THRESHOLD:
|
| 96 |
print(f"🎯 Silero VAD phát hiện speech: {speech_prob:.3f}")
|
| 97 |
|
|
@@ -99,7 +137,7 @@ class SileroVAD:
|
|
| 99 |
if self.speech_callback:
|
| 100 |
self.speech_callback(audio_chunk, self.sample_rate)
|
| 101 |
|
| 102 |
-
# Giữ lại 0.3 giây cuối để overlap
|
| 103 |
keep_samples = int(self.sample_rate * 0.3)
|
| 104 |
if len(self.audio_buffer) > keep_samples:
|
| 105 |
self.audio_buffer = self.audio_buffer[-keep_samples:]
|
|
@@ -142,15 +180,19 @@ class SileroVAD:
|
|
| 142 |
|
| 143 |
# Chuẩn hóa audio
|
| 144 |
if audio_chunk.dtype != np.float32:
|
| 145 |
-
audio_chunk = audio_chunk.astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
# Đảm bảo độ dài phù hợp
|
| 148 |
-
if len(audio_chunk) < 512:
|
| 149 |
-
padding = np.zeros(512 - len(audio_chunk))
|
| 150 |
audio_chunk = np.concatenate([audio_chunk, padding])
|
| 151 |
|
| 152 |
# Chuyển thành tensor
|
| 153 |
-
audio_tensor = torch.from_numpy(audio_chunk).unsqueeze(0)
|
| 154 |
|
| 155 |
# Phát hiện speech
|
| 156 |
with torch.no_grad():
|
|
@@ -164,7 +206,7 @@ class SileroVAD:
|
|
| 164 |
return True
|
| 165 |
|
| 166 |
def get_speech_probability(self, audio_chunk: np.ndarray, sample_rate: int) -> float:
|
| 167 |
-
"""Lấy xác suất speech
|
| 168 |
if self.model is None:
|
| 169 |
return 0.0
|
| 170 |
|
|
@@ -175,15 +217,19 @@ class SileroVAD:
|
|
| 175 |
|
| 176 |
# Chuẩn hóa audio
|
| 177 |
if audio_chunk.dtype != np.float32:
|
| 178 |
-
audio_chunk = audio_chunk.astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
# Đảm bảo độ dài phù hợp
|
| 181 |
if len(audio_chunk) < 512:
|
| 182 |
-
padding = np.zeros(512 - len(audio_chunk))
|
| 183 |
audio_chunk = np.concatenate([audio_chunk, padding])
|
| 184 |
|
| 185 |
# Chuyển thành tensor
|
| 186 |
-
audio_tensor = torch.from_numpy(audio_chunk).unsqueeze(0)
|
| 187 |
|
| 188 |
# Phát hiện speech
|
| 189 |
with torch.no_grad():
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from typing import Optional, Callable
|
| 4 |
from config.settings import settings
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
class SileroVAD:
|
| 8 |
def __init__(self):
|
| 9 |
self.model = None
|
| 10 |
+
self.sample_rate = 16000
|
| 11 |
self.is_streaming = False
|
| 12 |
self.speech_callback = None
|
| 13 |
self.audio_buffer = []
|
| 14 |
self._initialize_model()
|
| 15 |
|
| 16 |
def _initialize_model(self):
|
| 17 |
+
"""Khởi tạo Silero VAD model sử dụng torch.hub"""
|
| 18 |
try:
|
| 19 |
+
print("🔄 Đang tải Silero VAD model từ torch.hub...")
|
| 20 |
+
|
| 21 |
+
# Sử dụng torch.hub để load model (cách chính thức)
|
| 22 |
+
self.model = torch.hub.load(
|
| 23 |
+
repo_or_dir=settings.VAD_MODEL,
|
| 24 |
+
model='silero_vad',
|
| 25 |
+
force_reload=False, # Sử dụng cache nếu có
|
| 26 |
+
trust_repo=True
|
| 27 |
)
|
| 28 |
+
|
|
|
|
| 29 |
print("✅ Đã tải Silero VAD model thành công")
|
| 30 |
+
|
| 31 |
except Exception as e:
|
| 32 |
print(f"❌ Lỗi tải Silero VAD model: {e}")
|
| 33 |
+
print("🔄 Đang thử cách tải thay thế...")
|
| 34 |
+
self._initialize_model_fallback()
|
| 35 |
+
|
| 36 |
+
def _initialize_model_fallback(self):
|
| 37 |
+
"""Fallback method nếu cách chính thức không hoạt động"""
|
| 38 |
+
try:
|
| 39 |
+
# Cách 2: Sử dụng direct download
|
| 40 |
+
model_urls = {
|
| 41 |
+
'silero_vad.jit': 'https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.jit'
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Tạo thư mục cache
|
| 45 |
+
os.makedirs('./models', exist_ok=True)
|
| 46 |
+
model_path = './models/silero_vad.jit'
|
| 47 |
+
|
| 48 |
+
if not os.path.exists(model_path):
|
| 49 |
+
print("📥 Đang download Silero VAD model...")
|
| 50 |
+
torch.hub.download_url_to_file(
|
| 51 |
+
model_urls['silero_vad.jit'],
|
| 52 |
+
model_path
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Load model
|
| 56 |
+
self.model = torch.jit.load(model_path)
|
| 57 |
+
self.model.eval()
|
| 58 |
+
print("✅ Đã tải Silero VAD model thành công (fallback)")
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"❌ Lỗi tải Silero VAD model fallback: {e}")
|
| 62 |
self.model = None
|
| 63 |
|
| 64 |
def start_stream(self, speech_callback: Callable):
|
|
|
|
| 86 |
return
|
| 87 |
|
| 88 |
try:
|
| 89 |
+
# Resample nếu cần
|
| 90 |
if sample_rate != self.sample_rate:
|
| 91 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 92 |
|
| 93 |
# Thêm vào buffer
|
| 94 |
self.audio_buffer.extend(audio_chunk)
|
| 95 |
|
| 96 |
+
# Xử lý khi buffer đủ lớn (1 giây)
|
| 97 |
buffer_duration = len(self.audio_buffer) / self.sample_rate
|
| 98 |
+
if buffer_duration >= 1.0:
|
| 99 |
self._process_buffer()
|
| 100 |
|
| 101 |
except Exception as e:
|
|
|
|
| 104 |
def _process_buffer(self):
|
| 105 |
"""Xử lý buffer audio với Silero VAD"""
|
| 106 |
try:
|
|
|
|
| 107 |
chunk_size = self.sample_rate # 1 giây
|
| 108 |
if len(self.audio_buffer) < chunk_size:
|
| 109 |
return
|
|
|
|
| 113 |
|
| 114 |
# Chuẩn hóa audio cho Silero
|
| 115 |
if audio_chunk.dtype != np.float32:
|
| 116 |
+
audio_chunk = audio_chunk.astype(np.float32)
|
| 117 |
+
if np.max(np.abs(audio_chunk)) > 1.0:
|
| 118 |
+
audio_chunk = audio_chunk / 32768.0 # Normalize từ int16
|
| 119 |
+
|
| 120 |
+
# Đảm bảo audio trong range [-1, 1]
|
| 121 |
+
audio_chunk = np.clip(audio_chunk, -1.0, 1.0)
|
| 122 |
|
| 123 |
# Chuyển thành tensor
|
| 124 |
+
audio_tensor = torch.from_numpy(audio_chunk).float().unsqueeze(0)
|
| 125 |
|
| 126 |
# Phát hiện speech với Silero VAD
|
| 127 |
with torch.no_grad():
|
|
|
|
| 129 |
|
| 130 |
print(f"🎯 Silero VAD speech probability: {speech_prob:.3f}")
|
| 131 |
|
| 132 |
+
# Ngưỡng phát hiện speech
|
| 133 |
if speech_prob > settings.VAD_THRESHOLD:
|
| 134 |
print(f"🎯 Silero VAD phát hiện speech: {speech_prob:.3f}")
|
| 135 |
|
|
|
|
| 137 |
if self.speech_callback:
|
| 138 |
self.speech_callback(audio_chunk, self.sample_rate)
|
| 139 |
|
| 140 |
+
# Giữ lại 0.3 giây cuối để overlap
|
| 141 |
keep_samples = int(self.sample_rate * 0.3)
|
| 142 |
if len(self.audio_buffer) > keep_samples:
|
| 143 |
self.audio_buffer = self.audio_buffer[-keep_samples:]
|
|
|
|
| 180 |
|
| 181 |
# Chuẩn hóa audio
|
| 182 |
if audio_chunk.dtype != np.float32:
|
| 183 |
+
audio_chunk = audio_chunk.astype(np.float32)
|
| 184 |
+
if np.max(np.abs(audio_chunk)) > 1.0:
|
| 185 |
+
audio_chunk = audio_chunk / 32768.0
|
| 186 |
+
|
| 187 |
+
audio_chunk = np.clip(audio_chunk, -1.0, 1.0)
|
| 188 |
|
| 189 |
# Đảm bảo độ dài phù hợp
|
| 190 |
+
if len(audio_chunk) < 512:
|
| 191 |
+
padding = np.zeros(512 - len(audio_chunk), dtype=np.float32)
|
| 192 |
audio_chunk = np.concatenate([audio_chunk, padding])
|
| 193 |
|
| 194 |
# Chuyển thành tensor
|
| 195 |
+
audio_tensor = torch.from_numpy(audio_chunk).float().unsqueeze(0)
|
| 196 |
|
| 197 |
# Phát hiện speech
|
| 198 |
with torch.no_grad():
|
|
|
|
| 206 |
return True
|
| 207 |
|
| 208 |
def get_speech_probability(self, audio_chunk: np.ndarray, sample_rate: int) -> float:
|
| 209 |
+
"""Lấy xác suất speech"""
|
| 210 |
if self.model is None:
|
| 211 |
return 0.0
|
| 212 |
|
|
|
|
| 217 |
|
| 218 |
# Chuẩn hóa audio
|
| 219 |
if audio_chunk.dtype != np.float32:
|
| 220 |
+
audio_chunk = audio_chunk.astype(np.float32)
|
| 221 |
+
if np.max(np.abs(audio_chunk)) > 1.0:
|
| 222 |
+
audio_chunk = audio_chunk / 32768.0
|
| 223 |
+
|
| 224 |
+
audio_chunk = np.clip(audio_chunk, -1.0, 1.0)
|
| 225 |
|
| 226 |
# Đảm bảo độ dài phù hợp
|
| 227 |
if len(audio_chunk) < 512:
|
| 228 |
+
padding = np.zeros(512 - len(audio_chunk), dtype=np.float32)
|
| 229 |
audio_chunk = np.concatenate([audio_chunk, padding])
|
| 230 |
|
| 231 |
# Chuyển thành tensor
|
| 232 |
+
audio_tensor = torch.from_numpy(audio_chunk).float().unsqueeze(0)
|
| 233 |
|
| 234 |
# Phát hiện speech
|
| 235 |
with torch.no_grad():
|