datbkpro commited on
Commit
281882b
·
verified ·
1 Parent(s): df27322

Update services/stream_object_detection_service.py

Browse files
services/stream_object_detection_service.py CHANGED
@@ -1,19 +1,24 @@
1
- from PIL import ImageDraw, ImageFont
2
- import spaces
3
  import cv2
4
- from PIL import Image
5
- import numpy as np
6
  import torch
 
7
  import uuid
 
 
 
 
 
 
8
 
9
- SUBSAMPLE = 2 # giảm tốc độ khung hình để tăng tốc độ xử lý
10
 
11
 
12
- class StreamObjectDetection :
 
13
  def draw_bounding_boxes(image, boxes, model, conf_threshold):
14
  draw = ImageDraw.Draw(image)
15
  font = ImageFont.load_default()
16
-
17
  for score, label, box in zip(boxes["scores"], boxes["labels"], boxes["boxes"]):
18
  if score < conf_threshold:
19
  continue
@@ -21,52 +26,58 @@ class StreamObjectDetection :
21
  label_text = f"{model.config.id2label[label.item()]}: {score:.2f}"
22
  draw.rectangle([x0, y0, x1, y1], outline="red", width=3)
23
  draw.text((x0 + 3, y0 + 3), label_text, fill="white", font=font)
24
-
25
  return image
26
-
27
- @spaces.CPU # dùng GPU nếu chạy trên Hugging Face
28
- def stream_object_detection(video, conf_threshold):
 
29
  cap = cv2.VideoCapture(video)
30
  video_codec = cv2.VideoWriter_fourcc(*"mp4v")
31
- fps = int(cap.get(cv2.CAP_PROP_FPS))
32
- desired_fps = fps // SUBSAMPLE
33
  width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
34
  height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
35
-
36
  iterating, frame = cap.read()
37
  n_frames = 0
38
  output_video_name = f"output_{uuid.uuid4()}.mp4"
39
  output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height))
40
  batch = []
41
-
42
  while iterating:
43
  frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)
44
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
45
-
46
  if n_frames % SUBSAMPLE == 0:
47
  batch.append(frame)
48
-
49
- if len(batch) == 2 * desired_fps: # mỗi 2s xử lý 1 lần
 
50
  inputs = image_processor(images=batch, return_tensors="pt").to(model.device)
 
51
  with torch.no_grad():
52
  outputs = model(**inputs)
53
-
54
  boxes = image_processor.post_process_object_detection(
55
  outputs,
56
  target_sizes=torch.tensor([(height, width)] * len(batch)).to(model.device),
57
  threshold=conf_threshold,
58
  )
59
-
60
  for img, box in zip(batch, boxes):
61
- pil_image = draw_bounding_boxes(Image.fromarray(img), box, model, conf_threshold)
62
- frame = np.array(pil_image)[:, :, ::-1]
63
- output_video.write(frame)
64
-
65
  batch = []
66
  output_video.release()
67
- yield output_video_name # stream ra video đã xử lý
68
  output_video_name = f"output_{uuid.uuid4()}.mp4"
69
  output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height))
70
-
71
  iterating, frame = cap.read()
72
- n_frames += 1
 
 
 
 
1
+ from PIL import ImageDraw, ImageFont, Image
 
2
  import cv2
 
 
3
  import torch
4
+ import numpy as np
5
  import uuid
6
+ import spaces
7
+ from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
8
+
9
+ # === Load model (chỉ load 1 lần khi khởi động Space) ===
10
+ image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
11
+ model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd").to("cuda" if torch.cuda.is_available() else "cpu")
12
 
13
+ SUBSAMPLE = 2 # giảm FPS để tiết kiệm tài nguyên
14
 
15
 
16
+ class StreamObjectDetection:
17
+ @staticmethod
18
  def draw_bounding_boxes(image, boxes, model, conf_threshold):
19
  draw = ImageDraw.Draw(image)
20
  font = ImageFont.load_default()
21
+
22
  for score, label, box in zip(boxes["scores"], boxes["labels"], boxes["boxes"]):
23
  if score < conf_threshold:
24
  continue
 
26
  label_text = f"{model.config.id2label[label.item()]}: {score:.2f}"
27
  draw.rectangle([x0, y0, x1, y1], outline="red", width=3)
28
  draw.text((x0 + 3, y0 + 3), label_text, fill="white", font=font)
29
+
30
  return image
31
+
32
+ @staticmethod
33
+ @spaces.GPU # Dùng GPU nếu có (ZeroGPU, GPU Cluster, v.v.)
34
+ def stream_object_detection(video, conf_threshold=0.3):
35
  cap = cv2.VideoCapture(video)
36
  video_codec = cv2.VideoWriter_fourcc(*"mp4v")
37
+ fps = int(cap.get(cv2.CAP_PROP_FPS)) or 24
38
+ desired_fps = max(1, fps // SUBSAMPLE)
39
  width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
40
  height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
41
+
42
  iterating, frame = cap.read()
43
  n_frames = 0
44
  output_video_name = f"output_{uuid.uuid4()}.mp4"
45
  output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height))
46
  batch = []
47
+
48
  while iterating:
49
  frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)
50
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
51
+
52
  if n_frames % SUBSAMPLE == 0:
53
  batch.append(frame)
54
+
55
+ # Mỗi 2 giây xử lý một lần
56
+ if len(batch) == 2 * desired_fps:
57
  inputs = image_processor(images=batch, return_tensors="pt").to(model.device)
58
+
59
  with torch.no_grad():
60
  outputs = model(**inputs)
61
+
62
  boxes = image_processor.post_process_object_detection(
63
  outputs,
64
  target_sizes=torch.tensor([(height, width)] * len(batch)).to(model.device),
65
  threshold=conf_threshold,
66
  )
67
+
68
  for img, box in zip(batch, boxes):
69
+ pil_image = StreamObjectDetection.draw_bounding_boxes(Image.fromarray(img), box, model, conf_threshold)
70
+ frame_bgr = np.array(pil_image)[:, :, ::-1]
71
+ output_video.write(frame_bgr)
72
+
73
  batch = []
74
  output_video.release()
75
+ yield output_video_name # Gửi video xử lý từng phần cho Gradio
76
  output_video_name = f"output_{uuid.uuid4()}.mp4"
77
  output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height))
78
+
79
  iterating, frame = cap.read()
80
+ n_frames += 1
81
+
82
+ cap.release()
83
+ output_video.release()