Update services/streaming_voice_service.py
Browse files
services/streaming_voice_service.py
CHANGED
|
@@ -14,460 +14,6 @@ from core.tts_service import EnhancedTTSService
|
|
| 14 |
from core.speechbrain_vad import SpeechBrainVAD
|
| 15 |
from core.silero_vad import SileroVAD
|
| 16 |
|
| 17 |
-
|
| 18 |
-
# class StreamingVoiceService:
|
| 19 |
-
# def __init__(self, groq_client: Groq, rag_system: EnhancedRAGSystem, tts_service: EnhancedTTSService):
|
| 20 |
-
# self.client = groq_client
|
| 21 |
-
# self.rag_system = rag_system
|
| 22 |
-
# self.tts_service = tts_service
|
| 23 |
-
|
| 24 |
-
# # Khởi tạo VAD
|
| 25 |
-
# self.vad_processor = SileroVAD()
|
| 26 |
-
# self.is_listening = False
|
| 27 |
-
# self.speech_callback = None
|
| 28 |
-
# self.is_processing = False # Tránh xử lý chồng chéo
|
| 29 |
-
# self.last_speech_time = 0
|
| 30 |
-
# self.silence_timeout = 2.0 # 2 giây im lặng thì dừng
|
| 31 |
-
|
| 32 |
-
# # Conversation context
|
| 33 |
-
# self.conversation_history = []
|
| 34 |
-
# self.current_transcription = ""
|
| 35 |
-
|
| 36 |
-
# # Audio buffer for VAD
|
| 37 |
-
# self.audio_buffer = []
|
| 38 |
-
# self.buffer_lock = threading.Lock()
|
| 39 |
-
|
| 40 |
-
# def start_listening(self, speech_callback: Callable) -> bool:
|
| 41 |
-
# """Bắt đầu lắng nghe với VAD"""
|
| 42 |
-
# if self.is_listening:
|
| 43 |
-
# return False
|
| 44 |
-
|
| 45 |
-
# self.speech_callback = speech_callback
|
| 46 |
-
# self.last_speech_time = time.time()
|
| 47 |
-
# success = self.vad_processor.start_stream(self._on_speech_detected)
|
| 48 |
-
# if success:
|
| 49 |
-
# self.is_listening = True
|
| 50 |
-
# self.is_processing = False
|
| 51 |
-
# print("🎙️ Đã bắt đầu lắng nghe với VAD")
|
| 52 |
-
# return success
|
| 53 |
-
|
| 54 |
-
# def stop_listening(self):
|
| 55 |
-
# """Dừng lắng nghe"""
|
| 56 |
-
# self.vad_processor.stop_stream()
|
| 57 |
-
# self.is_listening = False
|
| 58 |
-
# self.is_processing = False
|
| 59 |
-
# self.speech_callback = None
|
| 60 |
-
# with self.buffer_lock:
|
| 61 |
-
# self.audio_buffer = []
|
| 62 |
-
# print("🛑 Đã dừng lắng nghe")
|
| 63 |
-
|
| 64 |
-
# def process_audio_chunk(self, audio_data: tuple) -> Dict[str, Any]:
|
| 65 |
-
# """Xử lý audio chunk với VAD (dùng cho real-time streaming)"""
|
| 66 |
-
# if not audio_data or not self.is_listening or self.is_processing:
|
| 67 |
-
# return {
|
| 68 |
-
# 'transcription': "Đang lắng nghe...",
|
| 69 |
-
# 'response': "",
|
| 70 |
-
# 'tts_audio': None,
|
| 71 |
-
# 'status': 'listening'
|
| 72 |
-
# }
|
| 73 |
-
|
| 74 |
-
# try:
|
| 75 |
-
# sample_rate, audio_array = audio_data
|
| 76 |
-
|
| 77 |
-
# # Thêm vào buffer và xử lý với VAD
|
| 78 |
-
# with self.buffer_lock:
|
| 79 |
-
# self.audio_buffer.extend(audio_array)
|
| 80 |
-
# # Giới hạn buffer để tránh tràn bộ nhớ
|
| 81 |
-
# max_buffer_samples = sample_rate * 10 # 10 giây
|
| 82 |
-
# if len(self.audio_buffer) > max_buffer_samples:
|
| 83 |
-
# self.audio_buffer = self.audio_buffer[-max_buffer_samples:]
|
| 84 |
-
|
| 85 |
-
# # Xử lý với VAD
|
| 86 |
-
# self.vad_processor.process_stream(audio_array, sample_rate)
|
| 87 |
-
|
| 88 |
-
# # Kiểm tra timeout im lặng
|
| 89 |
-
# current_time = time.time()
|
| 90 |
-
# if current_time - self.last_speech_time > self.silence_timeout and len(self.audio_buffer) > 0:
|
| 91 |
-
# self._process_final_audio()
|
| 92 |
-
|
| 93 |
-
# return {
|
| 94 |
-
# 'transcription': "Đang lắng nghe...",
|
| 95 |
-
# 'response': "",
|
| 96 |
-
# 'tts_audio': None,
|
| 97 |
-
# 'status': 'listening'
|
| 98 |
-
# }
|
| 99 |
-
|
| 100 |
-
# except Exception as e:
|
| 101 |
-
# print(f"❌ Lỗi xử lý audio chunk: {e}")
|
| 102 |
-
# return {
|
| 103 |
-
# 'transcription': "",
|
| 104 |
-
# 'response': "",
|
| 105 |
-
# 'tts_audio': None,
|
| 106 |
-
# 'status': 'error'
|
| 107 |
-
# }
|
| 108 |
-
|
| 109 |
-
# def _on_speech_detected(self, speech_audio: np.ndarray, sample_rate: int):
|
| 110 |
-
# """Callback khi VAD phát hiện speech"""
|
| 111 |
-
# print(f"🎯 VAD phát hiện speech segment: {len(speech_audio)/sample_rate:.2f}s")
|
| 112 |
-
# self.last_speech_time = time.time()
|
| 113 |
-
|
| 114 |
-
# # Chỉ xử lý nếu không đang xử lý cái khác
|
| 115 |
-
# if self.is_processing:
|
| 116 |
-
# print("⚠️ Đang xử lý request trước đó, bỏ qua...")
|
| 117 |
-
# return
|
| 118 |
-
|
| 119 |
-
# self.is_processing = True
|
| 120 |
-
|
| 121 |
-
# try:
|
| 122 |
-
# # Chuyển đổi speech thành text
|
| 123 |
-
# transcription = self._transcribe_audio(speech_audio, sample_rate)
|
| 124 |
-
|
| 125 |
-
# if not transcription or len(transcription.strip()) < 2:
|
| 126 |
-
# print("⚠️ Transcription quá ngắn hoặc trống")
|
| 127 |
-
# self.is_processing = False
|
| 128 |
-
# return
|
| 129 |
-
|
| 130 |
-
# print(f"📝 VAD Transcription: {transcription}")
|
| 131 |
-
# self.current_transcription = transcription
|
| 132 |
-
|
| 133 |
-
# # Tạo phản hồi AI
|
| 134 |
-
# response = self._generate_ai_response(transcription)
|
| 135 |
-
|
| 136 |
-
# # Tạo TTS
|
| 137 |
-
# tts_audio_path = self._text_to_speech(response)
|
| 138 |
-
|
| 139 |
-
# # Gửi kết quả đến callback
|
| 140 |
-
# if self.speech_callback:
|
| 141 |
-
# self.speech_callback({
|
| 142 |
-
# 'transcription': transcription,
|
| 143 |
-
# 'response': response,
|
| 144 |
-
# 'tts_audio': tts_audio_path,
|
| 145 |
-
# 'status': 'completed'
|
| 146 |
-
# })
|
| 147 |
-
|
| 148 |
-
# except Exception as e:
|
| 149 |
-
# print(f"❌ Lỗi trong _on_speech_detected: {e}")
|
| 150 |
-
# finally:
|
| 151 |
-
# # Cho phép xử lý tiếp sau khi TTS kết thúc
|
| 152 |
-
# threading.Timer(1.0, self._reset_processing).start()
|
| 153 |
-
|
| 154 |
-
# def _reset_processing(self):
|
| 155 |
-
# """Reset trạng thái xử lý sau khi hoàn thành"""
|
| 156 |
-
# self.is_processing = False
|
| 157 |
-
# with self.buffer_lock:
|
| 158 |
-
# self.audio_buffer = []
|
| 159 |
-
|
| 160 |
-
# def _process_final_audio(self):
|
| 161 |
-
# """Xử lý audio cuối cùng khi hết thời gian im lặng"""
|
| 162 |
-
# if self.is_processing or not self.audio_buffer:
|
| 163 |
-
# return
|
| 164 |
-
|
| 165 |
-
# try:
|
| 166 |
-
# with self.buffer_lock:
|
| 167 |
-
# if not self.audio_buffer:
|
| 168 |
-
# return
|
| 169 |
-
|
| 170 |
-
# final_audio = np.array(self.audio_buffer)
|
| 171 |
-
# self.audio_buffer = []
|
| 172 |
-
|
| 173 |
-
# # Chỉ xử lý nếu audio đủ dài
|
| 174 |
-
# if len(final_audio) > 16000 * 0.5: # Ít nhất 0.5 giây
|
| 175 |
-
# print("🔄 Xử lý audio cuối cùng do im lặng timeout")
|
| 176 |
-
# self._on_speech_detected(final_audio, 16000)
|
| 177 |
-
|
| 178 |
-
# except Exception as e:
|
| 179 |
-
# print(f"❌ Lỗi xử lý final audio: {e}")
|
| 180 |
-
|
| 181 |
-
# def process_streaming_audio(self, audio_data: tuple) -> Dict[str, Any]:
|
| 182 |
-
# """Xử lý audio streaming (phương thức cũ cho compatibility)"""
|
| 183 |
-
# if not audio_data:
|
| 184 |
-
# return {
|
| 185 |
-
# 'transcription': "❌ Không có dữ liệu âm thanh",
|
| 186 |
-
# 'response': "Vui lòng nói lại",
|
| 187 |
-
# 'tts_audio': None,
|
| 188 |
-
# 'status': 'error'
|
| 189 |
-
# }
|
| 190 |
-
|
| 191 |
-
# # Nếu đang xử lý VAD, trả về trạng thái listening
|
| 192 |
-
# if self.is_processing:
|
| 193 |
-
# return {
|
| 194 |
-
# 'transcription': "Đang xử lý...",
|
| 195 |
-
# 'response': "",
|
| 196 |
-
# 'tts_audio': None,
|
| 197 |
-
# 'status': 'processing'
|
| 198 |
-
# }
|
| 199 |
-
|
| 200 |
-
# try:
|
| 201 |
-
# # Lấy dữ liệu audio từ Gradio
|
| 202 |
-
# sample_rate, audio_array = audio_data
|
| 203 |
-
|
| 204 |
-
# print(f"🎯 Nhận audio: {len(audio_array)} samples, SR: {sample_rate}")
|
| 205 |
-
|
| 206 |
-
# # Kiểm tra kiểu dữ liệu và chuyển đổi nếu cần
|
| 207 |
-
# if isinstance(audio_array, np.ndarray):
|
| 208 |
-
# if audio_array.dtype == np.float32 or audio_array.dtype == np.float64:
|
| 209 |
-
# # Chuyển từ float sang int16
|
| 210 |
-
# audio_array = (audio_array * 32767).astype(np.int16)
|
| 211 |
-
|
| 212 |
-
# # Kiểm tra audio có dữ liệu không
|
| 213 |
-
# if len(audio_array) == 0:
|
| 214 |
-
# return {
|
| 215 |
-
# 'transcription': "❌ Âm thanh trống",
|
| 216 |
-
# 'response': "Vui lòng nói lại",
|
| 217 |
-
# 'tts_audio': None,
|
| 218 |
-
# 'status': 'error'
|
| 219 |
-
# }
|
| 220 |
-
|
| 221 |
-
# # Tính toán âm lượng
|
| 222 |
-
# audio_abs = np.abs(audio_array.astype(np.float32))
|
| 223 |
-
# audio_rms = np.sqrt(np.mean(audio_abs**2)) / 32767.0
|
| 224 |
-
# print(f"📊 Âm lượng RMS: {audio_rms:.4f}")
|
| 225 |
-
|
| 226 |
-
# if audio_rms < 0.005:
|
| 227 |
-
# return {
|
| 228 |
-
# 'transcription': "❌ Âm thanh quá yếu",
|
| 229 |
-
# 'response': "Xin vui lòng nói to hơn",
|
| 230 |
-
# 'tts_audio': None,
|
| 231 |
-
# 'status': 'error'
|
| 232 |
-
# }
|
| 233 |
-
|
| 234 |
-
# # Sử dụng VAD để kiểm tra speech
|
| 235 |
-
# if not self.vad_processor.is_speech(audio_array, sample_rate):
|
| 236 |
-
# return {
|
| 237 |
-
# 'transcription': "❌ Không phát hiện giọng nói",
|
| 238 |
-
# 'response': "Vui lòng nói rõ hơn",
|
| 239 |
-
# 'tts_audio': None,
|
| 240 |
-
# 'status': 'error'
|
| 241 |
-
# }
|
| 242 |
-
|
| 243 |
-
# # Chuyển đổi thành văn bản
|
| 244 |
-
# transcription = self._transcribe_audio(audio_array, sample_rate)
|
| 245 |
-
|
| 246 |
-
# if not transcription or len(transcription.strip()) == 0:
|
| 247 |
-
# return {
|
| 248 |
-
# 'transcription': "❌ Không nghe rõ",
|
| 249 |
-
# 'response': "Xin vui lòng nói lại rõ hơn",
|
| 250 |
-
# 'tts_audio': None,
|
| 251 |
-
# 'status': 'error'
|
| 252 |
-
# }
|
| 253 |
-
|
| 254 |
-
# # Kiểm tra nếu transcription quá ngắn
|
| 255 |
-
# if len(transcription.strip()) < 2:
|
| 256 |
-
# return {
|
| 257 |
-
# 'transcription': "❌ Câu nói quá ngắn",
|
| 258 |
-
# 'response': "Xin vui lòng nói câu dài hơn",
|
| 259 |
-
# 'tts_audio': None,
|
| 260 |
-
# 'status': 'error'
|
| 261 |
-
# }
|
| 262 |
-
|
| 263 |
-
# print(f"📝 Đã chuyển đổi: {transcription}")
|
| 264 |
-
|
| 265 |
-
# # Cập nhật transcription hiện tại
|
| 266 |
-
# self.current_transcription = transcription
|
| 267 |
-
|
| 268 |
-
# # Tạo phản hồi AI
|
| 269 |
-
# response = self._generate_ai_response(transcription)
|
| 270 |
-
|
| 271 |
-
# # Tạo TTS
|
| 272 |
-
# tts_audio_path = self._text_to_speech(response)
|
| 273 |
-
|
| 274 |
-
# return {
|
| 275 |
-
# 'transcription': transcription,
|
| 276 |
-
# 'response': response,
|
| 277 |
-
# 'tts_audio': tts_audio_path,
|
| 278 |
-
# 'status': 'completed'
|
| 279 |
-
# }
|
| 280 |
-
|
| 281 |
-
# except Exception as e:
|
| 282 |
-
# print(f"❌ Lỗi xử lý streaming audio: {e}")
|
| 283 |
-
# print(f"Chi tiết lỗi: {traceback.format_exc()}")
|
| 284 |
-
# return {
|
| 285 |
-
# 'transcription': f"❌ Lỗi: {str(e)}",
|
| 286 |
-
# 'response': "Xin lỗi, có lỗi xảy ra trong quá trình xử lý",
|
| 287 |
-
# 'tts_audio': None,
|
| 288 |
-
# 'status': 'error'
|
| 289 |
-
# }
|
| 290 |
-
|
| 291 |
-
# def _transcribe_audio(self, audio_data: np.ndarray, sample_rate: int) -> Optional[str]:
|
| 292 |
-
# """Chuyển audio -> text với xử lý sample rate cải tiến"""
|
| 293 |
-
# try:
|
| 294 |
-
# # Đảm bảo kiểu dữ liệu là int16
|
| 295 |
-
# if audio_data.dtype != np.int16:
|
| 296 |
-
# if audio_data.dtype in [np.float32, np.float64]:
|
| 297 |
-
# audio_data = (audio_data * 32767).astype(np.int16)
|
| 298 |
-
# else:
|
| 299 |
-
# audio_data = audio_data.astype(np.int16)
|
| 300 |
-
|
| 301 |
-
# # Chuẩn hóa audio data
|
| 302 |
-
# if audio_data.ndim > 1:
|
| 303 |
-
# audio_data = np.mean(audio_data, axis=1).astype(np.int16) # Chuyển sang mono
|
| 304 |
-
|
| 305 |
-
# # Resample nếu sample rate không phải 16000Hz (Whisper yêu cầu)
|
| 306 |
-
# target_sample_rate = 16000
|
| 307 |
-
# if sample_rate != target_sample_rate:
|
| 308 |
-
# audio_data = self._resample_audio(audio_data, sample_rate, target_sample_rate)
|
| 309 |
-
# sample_rate = target_sample_rate
|
| 310 |
-
# print(f"🔄 Đã resample từ {sample_rate}Hz xuống {target_sample_rate}Hz")
|
| 311 |
-
|
| 312 |
-
# # Giới hạn độ dài audio
|
| 313 |
-
# max_duration = 10 # giây
|
| 314 |
-
# max_samples = sample_rate * max_duration
|
| 315 |
-
# if len(audio_data) > max_samples:
|
| 316 |
-
# audio_data = audio_data[:max_samples]
|
| 317 |
-
# print(f"⚠️ Cắt audio xuống còn {max_duration} giây")
|
| 318 |
-
|
| 319 |
-
# # Đảm bảo audio đủ dài
|
| 320 |
-
# min_duration = 0.5 # giây
|
| 321 |
-
# min_samples = int(sample_rate * min_duration)
|
| 322 |
-
# if len(audio_data) < min_samples:
|
| 323 |
-
# # Pad audio nếu quá ngắn
|
| 324 |
-
# padding = np.zeros(min_samples - len(audio_data), dtype=np.int16)
|
| 325 |
-
# audio_data = np.concatenate([audio_data, padding])
|
| 326 |
-
# print(f"⚠️ Đã pad audio lên {min_duration} giây")
|
| 327 |
-
|
| 328 |
-
# print(f"🔊 Gửi audio đến Whisper: {len(audio_data)} samples, {sample_rate}Hz")
|
| 329 |
-
|
| 330 |
-
# # Tạo temporary file trong memory
|
| 331 |
-
# buffer = io.BytesIO()
|
| 332 |
-
# sf.write(buffer, audio_data, sample_rate, format='wav', subtype='PCM_16')
|
| 333 |
-
# buffer.seek(0)
|
| 334 |
-
|
| 335 |
-
# # Gọi API Whisper với timeout
|
| 336 |
-
# import requests
|
| 337 |
-
# try:
|
| 338 |
-
# transcription = self.client.audio.transcriptions.create(
|
| 339 |
-
# model=settings.WHISPER_MODEL,
|
| 340 |
-
# file=("speech.wav", buffer.read(), "audio/wav"),
|
| 341 |
-
# response_format="text",
|
| 342 |
-
# language="vi",
|
| 343 |
-
# temperature=0.0,
|
| 344 |
-
# )
|
| 345 |
-
# except requests.exceptions.Timeout:
|
| 346 |
-
# print("❌ Whisper API timeout")
|
| 347 |
-
# return None
|
| 348 |
-
# except Exception as e:
|
| 349 |
-
# print(f"❌ Lỗi Whisper API: {e}")
|
| 350 |
-
# return None
|
| 351 |
-
|
| 352 |
-
# # Xử lý response
|
| 353 |
-
# if hasattr(transcription, 'text'):
|
| 354 |
-
# result = transcription.text.strip()
|
| 355 |
-
# elif isinstance(transcription, str):
|
| 356 |
-
# result = transcription.strip()
|
| 357 |
-
# else:
|
| 358 |
-
# result = str(transcription).strip()
|
| 359 |
-
|
| 360 |
-
# print(f"✅ Transcription thành công: '{result}'")
|
| 361 |
-
# return result
|
| 362 |
-
|
| 363 |
-
# except Exception as e:
|
| 364 |
-
# print(f"❌ Lỗi transcription: {e}")
|
| 365 |
-
# print(f"Audio details: dtype={audio_data.dtype}, shape={audio_data.shape}, sr={sample_rate}")
|
| 366 |
-
# return None
|
| 367 |
-
|
| 368 |
-
# def _resample_audio(self, audio_data: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
|
| 369 |
-
# """Resample audio sử dụng scipy - cải tiến độ chính xác"""
|
| 370 |
-
# try:
|
| 371 |
-
# from scipy import signal
|
| 372 |
-
|
| 373 |
-
# # Tính số samples mới
|
| 374 |
-
# duration = len(audio_data) / orig_sr
|
| 375 |
-
# new_length = int(duration * target_sr)
|
| 376 |
-
|
| 377 |
-
# # Resample sử dụng scipy.signal.resample với windowing
|
| 378 |
-
# resampled_audio = signal.resample(audio_data, new_length)
|
| 379 |
-
|
| 380 |
-
# # Chuyển lại về int16
|
| 381 |
-
# resampled_audio = np.clip(resampled_audio, -32768, 32767).astype(np.int16)
|
| 382 |
-
|
| 383 |
-
# return resampled_audio
|
| 384 |
-
|
| 385 |
-
# except ImportError:
|
| 386 |
-
# print("⚠️ Không có scipy, sử dụng simple resampling")
|
| 387 |
-
# # Simple resampling bằng interpolation
|
| 388 |
-
# orig_length = len(audio_data)
|
| 389 |
-
# new_length = int(orig_length * target_sr / orig_sr)
|
| 390 |
-
|
| 391 |
-
# # Linear interpolation
|
| 392 |
-
# x_old = np.linspace(0, 1, orig_length)
|
| 393 |
-
# x_new = np.linspace(0, 1, new_length)
|
| 394 |
-
# resampled_audio = np.interp(x_new, x_old, audio_data).astype(np.int16)
|
| 395 |
-
|
| 396 |
-
# return resampled_audio
|
| 397 |
-
# except Exception as e:
|
| 398 |
-
# print(f"❌ Lỗi resample: {e}")
|
| 399 |
-
# return audio_data
|
| 400 |
-
|
| 401 |
-
# def _generate_ai_response(self, user_input: str) -> str:
|
| 402 |
-
# """Sinh phản hồi AI với xử lý lỗi"""
|
| 403 |
-
# try:
|
| 404 |
-
# # Thêm vào lịch sử
|
| 405 |
-
# self.conversation_history.append({"role": "user", "content": user_input})
|
| 406 |
-
|
| 407 |
-
# # Tìm kiếm RAG
|
| 408 |
-
# rag_results = self.rag_system.semantic_search(user_input, top_k=2)
|
| 409 |
-
# context_text = "\n".join([f"- {result.get('text', str(result))}" for result in rag_results]) if rag_results else ""
|
| 410 |
-
|
| 411 |
-
# system_prompt = f"""Bạn là trợ lý AI thông minh chuyên về tiếng Việt.
|
| 412 |
-
# Hãy trả lời ngắn gọn, tự nhiên và hữu ích (dưới 100 từ).
|
| 413 |
-
# Thông tin tham khảo:
|
| 414 |
-
# {context_text}
|
| 415 |
-
# """
|
| 416 |
-
|
| 417 |
-
# messages = [{"role": "system", "content": system_prompt}]
|
| 418 |
-
# # Giữ lại 4 tin nhắn gần nhất
|
| 419 |
-
# messages.extend(self.conversation_history[-4:])
|
| 420 |
-
|
| 421 |
-
# completion = self.client.chat.completions.create(
|
| 422 |
-
# model="llama-3.1-8b-instant",
|
| 423 |
-
# messages=messages,
|
| 424 |
-
# max_tokens=150,
|
| 425 |
-
# temperature=0.7
|
| 426 |
-
# )
|
| 427 |
-
|
| 428 |
-
# response = completion.choices[0].message.content
|
| 429 |
-
# self.conversation_history.append({"role": "assistant", "content": response})
|
| 430 |
-
|
| 431 |
-
# # Giới hạn lịch sử
|
| 432 |
-
# if len(self.conversation_history) > 8:
|
| 433 |
-
# self.conversation_history = self.conversation_history[-8:]
|
| 434 |
-
|
| 435 |
-
# return response
|
| 436 |
-
|
| 437 |
-
# except Exception as e:
|
| 438 |
-
# print(f"❌ Lỗi tạo AI response: {e}")
|
| 439 |
-
# return "Xin lỗi, tôi gặp lỗi khi tạo phản hồi. Vui lòng thử lại."
|
| 440 |
-
|
| 441 |
-
# def _text_to_speech(self, text: str) -> Optional[str]:
|
| 442 |
-
# """Chuyển văn bản thành giọng nói với xử lý lỗi"""
|
| 443 |
-
# try:
|
| 444 |
-
# if not text or text.startswith("❌") or text.startswith("Xin lỗi"):
|
| 445 |
-
# return None
|
| 446 |
-
|
| 447 |
-
# tts_bytes = self.tts_service.text_to_speech(text, 'vi')
|
| 448 |
-
# if tts_bytes:
|
| 449 |
-
# audio_path = self.tts_service.save_audio_to_file(tts_bytes)
|
| 450 |
-
# print(f"✅ Đã tạo TTS: {audio_path}")
|
| 451 |
-
# return audio_path
|
| 452 |
-
# except Exception as e:
|
| 453 |
-
# print(f"❌ Lỗi TTS: {e}")
|
| 454 |
-
# return None
|
| 455 |
-
|
| 456 |
-
# def clear_conversation(self):
|
| 457 |
-
# """Xóa lịch sử hội thoại"""
|
| 458 |
-
# self.conversation_history = []
|
| 459 |
-
# self.current_transcription = ""
|
| 460 |
-
# print("🗑️ Đã xóa lịch sử hội thoại")
|
| 461 |
-
|
| 462 |
-
# def get_conversation_state(self) -> dict:
|
| 463 |
-
# """Lấy trạng thái hội thoại"""
|
| 464 |
-
# return {
|
| 465 |
-
# 'is_listening': self.is_listening,
|
| 466 |
-
# 'is_processing': self.is_processing,
|
| 467 |
-
# 'history_length': len(self.conversation_history),
|
| 468 |
-
# 'current_transcription': self.current_transcription,
|
| 469 |
-
# 'last_update': time.strftime("%H:%M:%S")
|
| 470 |
-
# }
|
| 471 |
class StreamingVoiceService:
|
| 472 |
def __init__(self, groq_client: Groq, rag_system: EnhancedRAGSystem, tts_service: EnhancedTTSService):
|
| 473 |
self.client = groq_client
|
|
|
|
| 14 |
from core.speechbrain_vad import SpeechBrainVAD
|
| 15 |
from core.silero_vad import SileroVAD
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
class StreamingVoiceService:
|
| 18 |
def __init__(self, groq_client: Groq, rag_system: EnhancedRAGSystem, tts_service: EnhancedTTSService):
|
| 19 |
self.client = groq_client
|