Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
from huggingface_hub import ModelCard, DatasetCard, model_info, dataset_info
|
| 5 |
+
import logging
|
| 6 |
+
from typing import Tuple, Literal
|
| 7 |
+
import functools
|
| 8 |
+
|
| 9 |
+
# Set up logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
# Global variables
|
| 14 |
+
MODEL_NAME = "davanstrien/Smol-Hub-tldr"
|
| 15 |
+
model = None
|
| 16 |
+
tokenizer = None
|
| 17 |
+
device = None
|
| 18 |
+
|
| 19 |
+
def load_model():
|
| 20 |
+
global model, tokenizer, device
|
| 21 |
+
logger.info("Loading model and tokenizer...")
|
| 22 |
+
try:
|
| 23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 26 |
+
model = model.to(device)
|
| 27 |
+
model.eval()
|
| 28 |
+
return True
|
| 29 |
+
except Exception as e:
|
| 30 |
+
logger.error(f"Failed to load model: {e}")
|
| 31 |
+
return False
|
| 32 |
+
|
| 33 |
+
@functools.lru_cache(maxsize=100)
|
| 34 |
+
def get_card_info(hub_id: str) -> Tuple[str, str]:
|
| 35 |
+
"""Get card information from a Hugging Face hub_id."""
|
| 36 |
+
try:
|
| 37 |
+
info = model_info(hub_id)
|
| 38 |
+
card = ModelCard.load(hub_id)
|
| 39 |
+
return "model", card.text
|
| 40 |
+
except Exception as e:
|
| 41 |
+
logger.error(f"Error fetching model card for {hub_id}: {e}")
|
| 42 |
+
try:
|
| 43 |
+
info = dataset_info(hub_id)
|
| 44 |
+
card = DatasetCard.load(hub_id)
|
| 45 |
+
return "dataset", card.text
|
| 46 |
+
except Exception as e:
|
| 47 |
+
logger.error(f"Error fetching dataset card for {hub_id}: {e}")
|
| 48 |
+
raise ValueError(f"Could not find model or dataset with id {hub_id}")
|
| 49 |
+
|
| 50 |
+
@functools.lru_cache(maxsize=100)
|
| 51 |
+
def generate_summary(card_text: str, card_type: str) -> str:
|
| 52 |
+
"""Generate a summary for the given card text."""
|
| 53 |
+
# Determine prefix based on card type
|
| 54 |
+
prefix = "<MODEL_CARD>" if card_type == "model" else "<DATASET_CARD>"
|
| 55 |
+
|
| 56 |
+
# Format input according to the chat template
|
| 57 |
+
messages = [{"role": "user", "content": f"{prefix}{card_text}"}]
|
| 58 |
+
inputs = tokenizer.apply_chat_template(
|
| 59 |
+
messages, add_generation_prompt=True, return_tensors="pt"
|
| 60 |
+
)
|
| 61 |
+
inputs = inputs.to(device)
|
| 62 |
+
|
| 63 |
+
# Generate with optimized settings
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
outputs = model.generate(
|
| 66 |
+
inputs,
|
| 67 |
+
max_new_tokens=60,
|
| 68 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 69 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 70 |
+
temperature=0.4,
|
| 71 |
+
do_sample=True,
|
| 72 |
+
use_cache=True,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Extract and clean up the summary
|
| 76 |
+
input_length = inputs.shape[1]
|
| 77 |
+
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=False)
|
| 78 |
+
|
| 79 |
+
# Extract just the summary part
|
| 80 |
+
try:
|
| 81 |
+
summary = response.split("<CARD_SUMMARY>")[-1].split("</CARD_SUMMARY>")[0].strip()
|
| 82 |
+
except IndexError:
|
| 83 |
+
summary = response.strip()
|
| 84 |
+
|
| 85 |
+
return summary
|
| 86 |
+
|
| 87 |
+
def summarize(hub_id: str = "", card_type: str = "model", content: str = "") -> str:
|
| 88 |
+
"""Interface function for Gradio."""
|
| 89 |
+
try:
|
| 90 |
+
if hub_id:
|
| 91 |
+
# Fetch and validate card type
|
| 92 |
+
inferred_type, card_text = get_card_info(hub_id)
|
| 93 |
+
if card_type and card_type != inferred_type:
|
| 94 |
+
return f"Error: Provided card_type '{card_type}' doesn't match inferred type '{inferred_type}'"
|
| 95 |
+
card_type = inferred_type
|
| 96 |
+
elif content:
|
| 97 |
+
if not card_type:
|
| 98 |
+
return "Error: card_type must be provided when using direct content"
|
| 99 |
+
card_text = content
|
| 100 |
+
else:
|
| 101 |
+
return "Error: Either hub_id or content must be provided"
|
| 102 |
+
|
| 103 |
+
summary = generate_summary(card_text, card_type)
|
| 104 |
+
return summary
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
return f"Error: {str(e)}"
|
| 108 |
+
|
| 109 |
+
# Create the Gradio interface
|
| 110 |
+
def create_interface():
|
| 111 |
+
with gr.Blocks(title="Hub TLDR") as interface:
|
| 112 |
+
gr.Markdown("# Hugging Face Hub TLDR Generator")
|
| 113 |
+
gr.Markdown("Generate concise summaries of model and dataset cards from the Hugging Face Hub.")
|
| 114 |
+
|
| 115 |
+
with gr.Tab("Summarize by Hub ID"):
|
| 116 |
+
hub_id_input = gr.Textbox(
|
| 117 |
+
label="Hub ID",
|
| 118 |
+
placeholder="e.g., huggingface/llama-7b"
|
| 119 |
+
)
|
| 120 |
+
hub_id_type = gr.Radio(
|
| 121 |
+
choices=["model", "dataset"],
|
| 122 |
+
label="Card Type (optional)",
|
| 123 |
+
value="model"
|
| 124 |
+
)
|
| 125 |
+
hub_id_button = gr.Button("Generate Summary")
|
| 126 |
+
hub_id_output = gr.Textbox(label="Summary")
|
| 127 |
+
|
| 128 |
+
hub_id_button.click(
|
| 129 |
+
fn=summarize,
|
| 130 |
+
inputs=[hub_id_input, hub_id_type],
|
| 131 |
+
outputs=hub_id_output
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
with gr.Tab("Summarize Custom Content"):
|
| 135 |
+
content_input = gr.Textbox(
|
| 136 |
+
label="Content",
|
| 137 |
+
placeholder="Paste your model or dataset card content here...",
|
| 138 |
+
lines=10
|
| 139 |
+
)
|
| 140 |
+
content_type = gr.Radio(
|
| 141 |
+
choices=["model", "dataset"],
|
| 142 |
+
label="Card Type",
|
| 143 |
+
value="model"
|
| 144 |
+
)
|
| 145 |
+
content_button = gr.Button("Generate Summary")
|
| 146 |
+
content_output = gr.Textbox(label="Summary")
|
| 147 |
+
|
| 148 |
+
content_button.click(
|
| 149 |
+
fn=lambda content, card_type: summarize(content=content, card_type=card_type),
|
| 150 |
+
inputs=[content_input, content_type],
|
| 151 |
+
outputs=content_output
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
return interface
|
| 155 |
+
|
| 156 |
+
if __name__ == "__main__":
|
| 157 |
+
if load_model():
|
| 158 |
+
interface = create_interface()
|
| 159 |
+
interface.launch()
|
| 160 |
+
else:
|
| 161 |
+
print("Failed to load model. Please check the logs for details.")
|