Spaces:
Runtime error
Runtime error
File size: 7,798 Bytes
0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d 0a5527f b7b3c0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
#!/usr/bin/env python3
"""
DeepSeek-OCR Dataset Processing
Minimal adaptation of official run_dpsk_ocr_eval_batch.py for dataset processing
"""
import argparse
import json
import os
import sys
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
import torch
if torch.version.cuda == '11.8':
os.environ["TRITON_PTXAS_PATH"] = "/usr/local/cuda-11.8/bin/ptxas"
os.environ['VLLM_USE_V1'] = '0'
from vllm import LLM, SamplingParams
from vllm.model_executor.models.registry import ModelRegistry
from PIL import Image, ImageOps
from tqdm.auto import tqdm
from datasets import load_dataset
from huggingface_hub import login
# Import DeepSeek-OCR modules (unchanged from original)
from deepseek_ocr import DeepseekOCRForCausalLM
from process.ngram_norepeat import NoRepeatNGramLogitsProcessor
from process.image_process import DeepseekOCRProcessor
from config import MODEL_PATH, PROMPT, CROP_MODE
# Register custom model (unchanged from original)
ModelRegistry.register_model("DeepseekOCRForCausalLM", DeepseekOCRForCausalLM)
def check_cuda():
"""Check CUDA availability"""
if not torch.cuda.is_available():
print("ERROR: CUDA is not available. This script requires a GPU.")
sys.exit(1)
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
def process_single_image(image):
"""Preprocess single image (unchanged from official batch script)"""
prompt_in = PROMPT
cache_item = {
"prompt": prompt_in,
"multi_modal_data": {"image": DeepseekOCRProcessor().tokenize_with_images(
images=[image], bos=True, eos=True, cropping=CROP_MODE
)},
}
return cache_item
def main(args):
"""Main processing function"""
check_cuda()
# Enable HF_TRANSFER
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# Login to HF if token provided
HF_TOKEN = args.hf_token or os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Load dataset
print(f"Loading dataset: {args.input_dataset}")
dataset = load_dataset(args.input_dataset, split=args.split)
if args.image_column not in dataset.column_names:
print(f"ERROR: Column '{args.image_column}' not found")
print(f"Available columns: {dataset.column_names}")
sys.exit(1)
# Shuffle if requested
if args.shuffle:
print(f"Shuffling with seed {args.seed}")
dataset = dataset.shuffle(seed=args.seed)
# Limit samples if requested
if args.max_samples:
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
print(f"Processing {len(dataset)} samples")
# Initialize vLLM engine (UNCHANGED from official batch script)
print("Initializing vLLM engine...")
llm = LLM(
model=MODEL_PATH,
hf_overrides={"architectures": ["DeepseekOCRForCausalLM"]},
block_size=256,
enforce_eager=False,
trust_remote_code=True,
max_model_len=args.max_model_len,
swap_space=0,
max_num_seqs=args.max_num_seqs,
tensor_parallel_size=1,
gpu_memory_utilization=args.gpu_memory_utilization,
)
# Sampling params (UNCHANGED from official batch script)
logits_processors = [NoRepeatNGramLogitsProcessor(
ngram_size=40, window_size=90, whitelist_token_ids={128821, 128822}
)]
sampling_params = SamplingParams(
temperature=0.0,
max_tokens=args.max_tokens,
logits_processors=logits_processors,
skip_special_tokens=False,
)
# Load and preprocess images
print(f"Loading images from dataset...")
images = []
for idx in range(len(dataset)):
try:
image = dataset[idx][args.image_column]
if not isinstance(image, Image.Image):
image = Image.open(image) if isinstance(image, str) else image
image = ImageOps.exif_transpose(image.convert('RGB'))
images.append(image)
except Exception as e:
print(f"Error loading image {idx}: {e}")
images.append(None)
# Preprocess images in parallel (UNCHANGED from official batch script)
print(f"Preprocessing images...")
with ThreadPoolExecutor(max_workers=args.num_workers) as executor:
batch_inputs = list(tqdm(
executor.map(lambda img: process_single_image(img) if img else None, images),
total=len(images),
desc="Pre-processing images"
))
# Filter out None entries and track their indices
valid_indices = [i for i, inp in enumerate(batch_inputs) if inp is not None]
valid_batch_inputs = [inp for inp in batch_inputs if inp is not None]
# Batch inference (UNCHANGED from official batch script)
print(f"Running batch inference on {len(valid_batch_inputs)} images...")
outputs_list = llm.generate(
valid_batch_inputs,
sampling_params=sampling_params
)
# Extract results
all_markdown = ["[OCR FAILED]"] * len(dataset)
for idx, output in zip(valid_indices, outputs_list):
all_markdown[idx] = output.outputs[0].text.strip()
# Add markdown column
print("Adding markdown column...")
dataset = dataset.add_column("markdown", all_markdown)
# Handle inference_info
if "inference_info" in dataset.column_names:
try:
existing_info = json.loads(dataset[0]["inference_info"])
if not isinstance(existing_info, list):
existing_info = [existing_info]
except:
existing_info = []
dataset = dataset.remove_columns(["inference_info"])
else:
existing_info = []
new_info = {
"column_name": "markdown",
"model_id": MODEL_PATH,
"processing_date": datetime.now().isoformat(),
"prompt": PROMPT,
"max_tokens": args.max_tokens,
"max_model_len": args.max_model_len,
"gpu_memory_utilization": args.gpu_memory_utilization,
"max_num_seqs": args.max_num_seqs,
"script": "process_dataset.py",
"implementation": "vllm-batch (official deepseek batch code)",
}
existing_info.append(new_info)
info_json = json.dumps(existing_info, ensure_ascii=False)
dataset = dataset.add_column("inference_info", [info_json] * len(dataset))
# Push to hub
print(f"Pushing to {args.output_dataset}")
dataset.push_to_hub(args.output_dataset, private=args.private, token=HF_TOKEN)
print("✅ Complete!")
print(f"Dataset: https://huggingface.co/datasets/{args.output_dataset}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Process images through DeepSeek-OCR"
)
parser.add_argument("input_dataset", help="Input dataset ID")
parser.add_argument("output_dataset", help="Output dataset ID")
parser.add_argument("--image-column", default="image", help="Image column name")
parser.add_argument("--split", default="train", help="Dataset split")
parser.add_argument("--max-samples", type=int, help="Limit number of samples")
parser.add_argument("--shuffle", action="store_true", help="Shuffle dataset")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--max-model-len", type=int, default=8192)
parser.add_argument("--max-tokens", type=int, default=8192)
parser.add_argument("--gpu-memory-utilization", type=float, default=0.75)
parser.add_argument("--max-num-seqs", type=int, default=100, help="Max concurrent sequences")
parser.add_argument("--num-workers", type=int, default=64, help="Image preprocessing workers")
parser.add_argument("--hf-token", help="HF API token")
parser.add_argument("--private", action="store_true", help="Make output private")
args = parser.parse_args()
main(args)
|