Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/instruction-synthesizer")
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/instruction-synthesizer")
|
| 6 |
+
|
| 7 |
+
def parse_pred(pred):
|
| 8 |
+
"""Extract the list of instruction-response pairs from the prediction"""
|
| 9 |
+
QA_str_list = pred.split('</END>')
|
| 10 |
+
if not pred.endswith('</END>'):
|
| 11 |
+
QA_str_list = QA_str_list[:-1]
|
| 12 |
+
|
| 13 |
+
QA_list = []
|
| 14 |
+
raw_questions = []
|
| 15 |
+
for QA_str in QA_str_list:
|
| 16 |
+
try:
|
| 17 |
+
assert len(QA_str.split('<ANS>')) == 2, f'invalid QA string: {QA_str}'
|
| 18 |
+
Q_str, A_str = QA_str.split('<ANS>')
|
| 19 |
+
Q_str, A_str = Q_str.strip(), A_str.strip()
|
| 20 |
+
assert Q_str.startswith('<QUE>'), f'invalid question string: {Q_str} in QA_str: {QA_str}'
|
| 21 |
+
assert len(A_str) > 0, f'invalid answer string in QA_str: {QA_str}'
|
| 22 |
+
Q_str = Q_str.replace('<QUE>', '').strip()
|
| 23 |
+
assert Q_str.lower() not in raw_questions, f'duplicate question: {Q_str}'
|
| 24 |
+
QA_list.append({'Q': Q_str, 'A': A_str})
|
| 25 |
+
raw_questions.append(Q_str.lower())
|
| 26 |
+
except:
|
| 27 |
+
pass
|
| 28 |
+
|
| 29 |
+
return QA_list
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def get_instruction_response_pairs(context):
|
| 33 |
+
'''Prompt the synthesizer to generate instruction-response pairs based on the given context'''
|
| 34 |
+
prompt = f'<s> <CON> {context} </CON>\n\n'
|
| 35 |
+
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(model.device)
|
| 36 |
+
outputs = model.generate(input_ids=inputs, max_new_tokens=400, do_sample=False)[0]
|
| 37 |
+
|
| 38 |
+
pred_start = int(inputs.shape[-1])
|
| 39 |
+
pred = tokenizer.decode(outputs[pred_start:], skip_special_tokens=True)
|
| 40 |
+
return parse_pred(pred)
|
| 41 |
+
|
| 42 |
+
def generate_pairs(context):
|
| 43 |
+
instruction_response_pairs = get_instruction_response_pairs(context)
|
| 44 |
+
output = ""
|
| 45 |
+
for index, pair in enumerate(instruction_response_pairs):
|
| 46 |
+
output += f"## Instruction {index + 1}:\n{pair['Q']}\n## Response {index + 1}:\n{pair['A']}\n\n"
|
| 47 |
+
return output
|
| 48 |
+
|
| 49 |
+
# Create Gradio interface
|
| 50 |
+
iface = gr.Interface(
|
| 51 |
+
fn=generate_pairs,
|
| 52 |
+
inputs=gr.Textbox(lines=5, label="Enter context here"),
|
| 53 |
+
outputs=gr.Textbox(lines=20, label="Generated Instruction-Response Pairs"),
|
| 54 |
+
title="Instruction-Response Pair Generator",
|
| 55 |
+
description="Enter a context, and the model will generate relevant instruction-response pairs."
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Launch the interface
|
| 59 |
+
iface.launch()
|