Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,92 +2,97 @@ import spaces
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
import seaborn as sns
|
| 7 |
-
import os
|
| 8 |
|
| 9 |
# Load model and tokenizer
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 13 |
|
| 14 |
@spaces.GPU
|
| 15 |
-
def
|
| 16 |
-
#
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
|
| 22 |
-
# Get
|
| 23 |
with torch.no_grad():
|
| 24 |
outputs = model(input_ids)
|
| 25 |
logits = outputs.logits
|
| 26 |
|
| 27 |
-
# Get probabilities for
|
| 28 |
-
next_token_logits = logits[0,
|
| 29 |
next_token_probs = torch.softmax(next_token_logits, dim=0)
|
| 30 |
|
| 31 |
-
# Get top
|
| 32 |
topk_probs, topk_indices = torch.topk(next_token_probs, top_k)
|
| 33 |
-
|
| 34 |
-
# Convert to numpy for easier handling
|
| 35 |
-
topk_probs = topk_probs.numpy()
|
| 36 |
-
topk_indices = topk_indices.numpy()
|
| 37 |
-
|
| 38 |
-
# Decode tokens
|
| 39 |
topk_tokens = [tokenizer.decode([idx]) for idx in topk_indices]
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
gr.Markdown("Enter text and see the probabilities of possible next tokens.")
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
label="Input Text",
|
| 67 |
-
placeholder="Type some text here...",
|
| 68 |
-
value="Hello, my name is"
|
| 69 |
-
)
|
| 70 |
-
top_k = gr.Slider(
|
| 71 |
-
minimum=5,
|
| 72 |
-
maximum=20,
|
| 73 |
-
value=10,
|
| 74 |
-
step=1,
|
| 75 |
-
label="Number of top tokens to show"
|
| 76 |
-
)
|
| 77 |
-
btn = gr.Button("Generate Probabilities")
|
| 78 |
-
|
| 79 |
-
with gr.Column():
|
| 80 |
-
output_image = gr.Image(label="Probability Distribution")
|
| 81 |
-
output_table = gr.JSON(label="Token Probabilities")
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
# Launch the app
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load model and tokenizer
|
| 7 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
| 8 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
|
|
|
| 9 |
|
| 10 |
@spaces.GPU
|
| 11 |
+
def get_next_token_probs(text, top_k=5):
|
| 12 |
+
# Handle empty input
|
| 13 |
+
if not text.strip():
|
| 14 |
+
return [""] * top_k
|
| 15 |
|
| 16 |
+
# Tokenize input
|
| 17 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
| 18 |
|
| 19 |
+
# Get predictions
|
| 20 |
with torch.no_grad():
|
| 21 |
outputs = model(input_ids)
|
| 22 |
logits = outputs.logits
|
| 23 |
|
| 24 |
+
# Get probabilities for next token
|
| 25 |
+
next_token_logits = logits[0, -1, :]
|
| 26 |
next_token_probs = torch.softmax(next_token_logits, dim=0)
|
| 27 |
|
| 28 |
+
# Get top-k tokens and their probabilities
|
| 29 |
topk_probs, topk_indices = torch.topk(next_token_probs, top_k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
topk_tokens = [tokenizer.decode([idx]) for idx in topk_indices]
|
| 31 |
|
| 32 |
+
# Format the results as strings
|
| 33 |
+
formatted_results = []
|
| 34 |
+
for i, (token, prob) in enumerate(zip(topk_tokens, topk_probs)):
|
| 35 |
+
# Format probability as percentage with 1 decimal place
|
| 36 |
+
prob_percent = f"{prob.item()*100:.1f}%"
|
| 37 |
+
# Clean up token display (remove leading space if present)
|
| 38 |
+
display_token = token.replace(" ", "␣") # Replace space with visible space symbol
|
| 39 |
+
# Format the output string
|
| 40 |
+
formatted_results.append(f"{i+1}. \"{display_token}\" ({prob_percent})")
|
| 41 |
|
| 42 |
+
return formatted_results
|
| 43 |
+
|
| 44 |
+
# Create custom CSS
|
| 45 |
+
custom_css = """
|
| 46 |
+
.token-box {
|
| 47 |
+
margin-top: 10px;
|
| 48 |
+
padding: 15px;
|
| 49 |
+
border-radius: 8px;
|
| 50 |
+
background-color: #f7f7f7;
|
| 51 |
+
font-family: monospace;
|
| 52 |
+
font-size: 16px;
|
| 53 |
+
}
|
| 54 |
+
.token-item {
|
| 55 |
+
margin: 8px 0;
|
| 56 |
+
padding: 8px;
|
| 57 |
+
background-color: white;
|
| 58 |
+
border-left: 4px solid #2c8ecb;
|
| 59 |
+
border-radius: 4px;
|
| 60 |
+
}
|
| 61 |
+
footer {display: none}
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
# Create minimal interface
|
| 65 |
+
with gr.Blocks(css=custom_css) as demo:
|
| 66 |
+
gr.Markdown("### GPT-2 Next Token Predictor")
|
| 67 |
|
| 68 |
+
# Input textbox
|
| 69 |
+
input_text = gr.Textbox(
|
| 70 |
+
label="Text Input",
|
| 71 |
+
placeholder="Type here and watch predictions update...",
|
| 72 |
+
value="The weather tomorrow will be"
|
| 73 |
+
)
|
| 74 |
|
| 75 |
+
# Container for token displays
|
| 76 |
+
with gr.Box(elem_classes=["token-box"]):
|
| 77 |
+
gr.Markdown("##### Most likely next tokens:")
|
| 78 |
+
token_outputs = [gr.Markdown(elem_classes=["token-item"]) for _ in range(5)]
|
|
|
|
| 79 |
|
| 80 |
+
# Function to update tokens in real-time
|
| 81 |
+
def update_tokens(text):
|
| 82 |
+
return get_next_token_probs(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
# Set up the live update
|
| 85 |
+
input_text.change(
|
| 86 |
+
fn=update_tokens,
|
| 87 |
+
inputs=input_text,
|
| 88 |
+
outputs=token_outputs
|
| 89 |
)
|
| 90 |
|
| 91 |
+
# Initialize with default text
|
| 92 |
+
demo.load(
|
| 93 |
+
fn=update_tokens,
|
| 94 |
+
inputs=input_text,
|
| 95 |
+
outputs=token_outputs
|
| 96 |
)
|
| 97 |
|
| 98 |
# Launch the app
|