Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
5639776
1
Parent(s):
2c499db
Refactor XML parsing functions for improved readability and consistency
Browse files
app.py
CHANGED
|
@@ -14,15 +14,14 @@ MODEL_LOAD_ERROR_MSG = None
|
|
| 14 |
|
| 15 |
HF_PROCESSOR = AutoProcessor.from_pretrained("reducto/RolmOCR")
|
| 16 |
HF_MODEL = AutoModelForImageTextToText.from_pretrained(
|
| 17 |
-
|
| 18 |
-
torch_dtype=torch.bfloat16,
|
| 19 |
-
device_map="auto"
|
| 20 |
)
|
| 21 |
HF_PIPE = pipeline("image-text-to-text", model=HF_MODEL, processor=HF_PROCESSOR)
|
| 22 |
|
| 23 |
|
| 24 |
# --- Helper Functions ---
|
| 25 |
|
|
|
|
| 26 |
def get_xml_namespace(xml_file_path):
|
| 27 |
"""
|
| 28 |
Dynamically gets the namespace from the XML file.
|
|
@@ -31,16 +30,17 @@ def get_xml_namespace(xml_file_path):
|
|
| 31 |
try:
|
| 32 |
tree = ET.parse(xml_file_path)
|
| 33 |
root = tree.getroot()
|
| 34 |
-
if
|
| 35 |
-
ns = root.tag.split(
|
| 36 |
# Determine format based on root element
|
| 37 |
-
if
|
| 38 |
-
return ns,
|
| 39 |
-
elif
|
| 40 |
-
return ns,
|
| 41 |
except ET.ParseError:
|
| 42 |
print(f"Error parsing XML to find namespace: {xml_file_path}")
|
| 43 |
-
return
|
|
|
|
| 44 |
|
| 45 |
def parse_page_xml_for_text(xml_file_path):
|
| 46 |
"""
|
|
@@ -49,7 +49,7 @@ def parse_page_xml_for_text(xml_file_path):
|
|
| 49 |
- full_text (str): All extracted text concatenated.
|
| 50 |
"""
|
| 51 |
full_text_lines = []
|
| 52 |
-
|
| 53 |
if not xml_file_path or not os.path.exists(xml_file_path):
|
| 54 |
return "Error: XML file not provided or does not exist."
|
| 55 |
|
|
@@ -59,23 +59,23 @@ def parse_page_xml_for_text(xml_file_path):
|
|
| 59 |
root = tree.getroot()
|
| 60 |
|
| 61 |
# Find all TextLine elements
|
| 62 |
-
for text_line in root.findall(f
|
| 63 |
# First try to get text from TextEquiv/Unicode
|
| 64 |
-
text_equiv = text_line.find(f
|
| 65 |
if text_equiv is not None and text_equiv.text:
|
| 66 |
full_text_lines.append(text_equiv.text)
|
| 67 |
continue
|
| 68 |
|
| 69 |
# If no TextEquiv, try to get text from Word elements
|
| 70 |
line_text_parts = []
|
| 71 |
-
for word in text_line.findall(f
|
| 72 |
-
word_text = word.find(f
|
| 73 |
if word_text is not None and word_text.text:
|
| 74 |
line_text_parts.append(word_text.text)
|
| 75 |
-
|
| 76 |
if line_text_parts:
|
| 77 |
full_text_lines.append(" ".join(line_text_parts))
|
| 78 |
-
|
| 79 |
return "\n".join(full_text_lines)
|
| 80 |
|
| 81 |
except ET.ParseError as e:
|
|
@@ -83,6 +83,7 @@ def parse_page_xml_for_text(xml_file_path):
|
|
| 83 |
except Exception as e:
|
| 84 |
return f"An unexpected error occurred during XML parsing: {e}"
|
| 85 |
|
|
|
|
| 86 |
def parse_alto_xml_for_text(xml_file_path):
|
| 87 |
"""
|
| 88 |
Parses an ALTO XML file to extract text content.
|
|
@@ -90,7 +91,7 @@ def parse_alto_xml_for_text(xml_file_path):
|
|
| 90 |
- full_text (str): All extracted text concatenated.
|
| 91 |
"""
|
| 92 |
full_text_lines = []
|
| 93 |
-
|
| 94 |
if not xml_file_path or not os.path.exists(xml_file_path):
|
| 95 |
return "Error: XML file not provided or does not exist."
|
| 96 |
|
|
@@ -99,15 +100,15 @@ def parse_alto_xml_for_text(xml_file_path):
|
|
| 99 |
tree = ET.parse(xml_file_path)
|
| 100 |
root = tree.getroot()
|
| 101 |
|
| 102 |
-
for text_line in root.findall(f
|
| 103 |
line_text_parts = []
|
| 104 |
-
for string_element in text_line.findall(f
|
| 105 |
-
text = string_element.get(
|
| 106 |
if text:
|
| 107 |
line_text_parts.append(text)
|
| 108 |
if line_text_parts:
|
| 109 |
full_text_lines.append(" ".join(line_text_parts))
|
| 110 |
-
|
| 111 |
return "\n".join(full_text_lines)
|
| 112 |
|
| 113 |
except ET.ParseError as e:
|
|
@@ -115,6 +116,7 @@ def parse_alto_xml_for_text(xml_file_path):
|
|
| 115 |
except Exception as e:
|
| 116 |
return f"An unexpected error occurred during XML parsing: {e}"
|
| 117 |
|
|
|
|
| 118 |
def parse_xml_for_text(xml_file_path):
|
| 119 |
"""
|
| 120 |
Main function to parse XML files, automatically detecting the format.
|
|
@@ -124,24 +126,29 @@ def parse_xml_for_text(xml_file_path):
|
|
| 124 |
|
| 125 |
try:
|
| 126 |
_, xml_format = get_xml_namespace(xml_file_path)
|
| 127 |
-
|
| 128 |
-
if xml_format ==
|
| 129 |
return parse_page_xml_for_text(xml_file_path)
|
| 130 |
-
elif xml_format ==
|
| 131 |
return parse_alto_xml_for_text(xml_file_path)
|
| 132 |
else:
|
| 133 |
return f"Error: Unsupported XML format. Expected ALTO or PAGE XML."
|
| 134 |
-
|
| 135 |
except Exception as e:
|
| 136 |
return f"Error determining XML format: {str(e)}"
|
| 137 |
|
|
|
|
| 138 |
@spaces.GPU
|
| 139 |
def predict(pil_image):
|
| 140 |
"""Performs OCR prediction using the Hugging Face model."""
|
| 141 |
global HF_PIPE, MODEL_LOAD_ERROR_MSG
|
| 142 |
|
| 143 |
if HF_PIPE is None:
|
| 144 |
-
error_to_report =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
raise RuntimeError(error_to_report)
|
| 146 |
|
| 147 |
# Format the message in the expected structure
|
|
@@ -150,13 +157,17 @@ def predict(pil_image):
|
|
| 150 |
"role": "user",
|
| 151 |
"content": [
|
| 152 |
{"type": "image", "image": pil_image},
|
| 153 |
-
{
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
| 155 |
}
|
| 156 |
]
|
| 157 |
|
| 158 |
# Use the pipeline with the properly formatted messages
|
| 159 |
-
return HF_PIPE(messages,max_new_tokens=8096)
|
|
|
|
| 160 |
|
| 161 |
def run_hf_ocr(image_path):
|
| 162 |
"""
|
|
@@ -164,53 +175,68 @@ def run_hf_ocr(image_path):
|
|
| 164 |
"""
|
| 165 |
if image_path is None:
|
| 166 |
return "No image provided for OCR."
|
| 167 |
-
|
| 168 |
try:
|
| 169 |
pil_image = Image.open(image_path).convert("RGB")
|
| 170 |
-
ocr_results = predict(pil_image)
|
| 171 |
-
|
| 172 |
# Parse the output based on the user's example structure
|
| 173 |
-
if
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
if isinstance(generated_content, str):
|
| 177 |
return generated_content
|
| 178 |
|
| 179 |
if isinstance(generated_content, list) and generated_content:
|
| 180 |
if assistant_message := next(
|
| 181 |
(
|
| 182 |
-
msg[
|
| 183 |
for msg in reversed(generated_content)
|
| 184 |
if isinstance(msg, dict)
|
| 185 |
-
and msg.get(
|
| 186 |
-
and
|
| 187 |
),
|
| 188 |
None,
|
| 189 |
):
|
| 190 |
return assistant_message
|
| 191 |
-
|
| 192 |
# Fallback if the specific assistant message structure isn't found but there's content
|
| 193 |
-
if
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
print(f"Unexpected OCR output structure from HF model: {ocr_results}")
|
| 200 |
return "Error: Could not parse OCR model output. Check console."
|
| 201 |
-
|
| 202 |
else:
|
| 203 |
print(f"Unexpected OCR output structure from HF model: {ocr_results}")
|
| 204 |
return "Error: OCR model did not return expected output. Check console."
|
| 205 |
|
| 206 |
-
except RuntimeError as e:
|
| 207 |
return str(e)
|
| 208 |
except Exception as e:
|
| 209 |
print(f"Error during Hugging Face OCR processing: {e}")
|
| 210 |
return f"Error during Hugging Face OCR: {str(e)}"
|
| 211 |
|
|
|
|
| 212 |
# --- Gradio Interface Function ---
|
| 213 |
|
|
|
|
| 214 |
def process_files(image_path, xml_path):
|
| 215 |
"""
|
| 216 |
Main function for the Gradio interface.
|
|
@@ -226,7 +252,7 @@ def process_files(image_path, xml_path):
|
|
| 226 |
img_to_display = Image.open(image_path).convert("RGB")
|
| 227 |
hf_ocr_text_output = run_hf_ocr(image_path)
|
| 228 |
except Exception as e:
|
| 229 |
-
img_to_display = None
|
| 230 |
hf_ocr_text_output = f"Error loading image or running HF OCR: {e}"
|
| 231 |
else:
|
| 232 |
hf_ocr_text_output = "Please upload an image to perform OCR."
|
|
@@ -235,10 +261,10 @@ def process_files(image_path, xml_path):
|
|
| 235 |
xml_text_output = parse_xml_for_text(xml_path)
|
| 236 |
else:
|
| 237 |
xml_text_output = "No XML file uploaded."
|
| 238 |
-
|
| 239 |
# If only XML is provided without an image
|
| 240 |
if not image_path and xml_path:
|
| 241 |
-
img_to_display = None
|
| 242 |
hf_ocr_text_output = "Upload an image to perform OCR."
|
| 243 |
|
| 244 |
return img_to_display, xml_text_output, hf_ocr_text_output
|
|
@@ -255,38 +281,42 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 255 |
|
| 256 |
with gr.Row():
|
| 257 |
with gr.Column(scale=1):
|
| 258 |
-
image_input = gr.File(
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
submit_button = gr.Button("Process Image and XML", variant="primary")
|
| 261 |
|
| 262 |
with gr.Row():
|
| 263 |
with gr.Column(scale=1):
|
| 264 |
-
output_image_display = gr.Image(
|
|
|
|
|
|
|
| 265 |
with gr.Column(scale=1):
|
| 266 |
-
hf_ocr_output_textbox = gr.
|
| 267 |
-
label="OCR Output (Hugging Face Model)",
|
| 268 |
-
|
| 269 |
-
interactive=False,
|
| 270 |
-
show_copy_button=True
|
| 271 |
)
|
| 272 |
xml_output_textbox = gr.Textbox(
|
| 273 |
-
label="Text from XML",
|
| 274 |
-
lines=15,
|
| 275 |
interactive=False,
|
| 276 |
-
show_copy_button=True
|
| 277 |
)
|
| 278 |
-
|
| 279 |
submit_button.click(
|
| 280 |
fn=process_files,
|
| 281 |
inputs=[image_input, xml_input],
|
| 282 |
-
outputs=[output_image_display, xml_output_textbox, hf_ocr_output_textbox]
|
| 283 |
)
|
| 284 |
-
|
| 285 |
gr.Markdown("---")
|
| 286 |
gr.Markdown("### Example ALTO XML Snippet (for `String` element extraction):")
|
| 287 |
gr.Code(
|
| 288 |
value=(
|
| 289 |
-
"""<alto xmlns="http://www.loc.gov/standards/alto/v3/alto.xsd">
|
| 290 |
<Description>...</Description>
|
| 291 |
<Styles>...</Styles>
|
| 292 |
<Layout>
|
|
@@ -307,11 +337,13 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 307 |
</Layout>
|
| 308 |
</alto>"""
|
| 309 |
),
|
| 310 |
-
interactive=False
|
| 311 |
)
|
| 312 |
|
| 313 |
if __name__ == "__main__":
|
| 314 |
# Removed dummy file creation as it's less relevant for single file focus
|
| 315 |
print("Attempting to launch Gradio demo...")
|
| 316 |
-
print(
|
| 317 |
-
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
HF_PROCESSOR = AutoProcessor.from_pretrained("reducto/RolmOCR")
|
| 16 |
HF_MODEL = AutoModelForImageTextToText.from_pretrained(
|
| 17 |
+
"reducto/RolmOCR", torch_dtype=torch.bfloat16, device_map="auto"
|
|
|
|
|
|
|
| 18 |
)
|
| 19 |
HF_PIPE = pipeline("image-text-to-text", model=HF_MODEL, processor=HF_PROCESSOR)
|
| 20 |
|
| 21 |
|
| 22 |
# --- Helper Functions ---
|
| 23 |
|
| 24 |
+
|
| 25 |
def get_xml_namespace(xml_file_path):
|
| 26 |
"""
|
| 27 |
Dynamically gets the namespace from the XML file.
|
|
|
|
| 30 |
try:
|
| 31 |
tree = ET.parse(xml_file_path)
|
| 32 |
root = tree.getroot()
|
| 33 |
+
if "}" in root.tag:
|
| 34 |
+
ns = root.tag.split("}")[0] + "}"
|
| 35 |
# Determine format based on root element
|
| 36 |
+
if "PcGts" in root.tag:
|
| 37 |
+
return ns, "PAGE"
|
| 38 |
+
elif "alto" in root.tag.lower():
|
| 39 |
+
return ns, "ALTO"
|
| 40 |
except ET.ParseError:
|
| 41 |
print(f"Error parsing XML to find namespace: {xml_file_path}")
|
| 42 |
+
return "", "UNKNOWN"
|
| 43 |
+
|
| 44 |
|
| 45 |
def parse_page_xml_for_text(xml_file_path):
|
| 46 |
"""
|
|
|
|
| 49 |
- full_text (str): All extracted text concatenated.
|
| 50 |
"""
|
| 51 |
full_text_lines = []
|
| 52 |
+
|
| 53 |
if not xml_file_path or not os.path.exists(xml_file_path):
|
| 54 |
return "Error: XML file not provided or does not exist."
|
| 55 |
|
|
|
|
| 59 |
root = tree.getroot()
|
| 60 |
|
| 61 |
# Find all TextLine elements
|
| 62 |
+
for text_line in root.findall(f".//{ns_prefix}TextLine"):
|
| 63 |
# First try to get text from TextEquiv/Unicode
|
| 64 |
+
text_equiv = text_line.find(f"{ns_prefix}TextEquiv/{ns_prefix}Unicode")
|
| 65 |
if text_equiv is not None and text_equiv.text:
|
| 66 |
full_text_lines.append(text_equiv.text)
|
| 67 |
continue
|
| 68 |
|
| 69 |
# If no TextEquiv, try to get text from Word elements
|
| 70 |
line_text_parts = []
|
| 71 |
+
for word in text_line.findall(f"{ns_prefix}Word"):
|
| 72 |
+
word_text = word.find(f"{ns_prefix}TextEquiv/{ns_prefix}Unicode")
|
| 73 |
if word_text is not None and word_text.text:
|
| 74 |
line_text_parts.append(word_text.text)
|
| 75 |
+
|
| 76 |
if line_text_parts:
|
| 77 |
full_text_lines.append(" ".join(line_text_parts))
|
| 78 |
+
|
| 79 |
return "\n".join(full_text_lines)
|
| 80 |
|
| 81 |
except ET.ParseError as e:
|
|
|
|
| 83 |
except Exception as e:
|
| 84 |
return f"An unexpected error occurred during XML parsing: {e}"
|
| 85 |
|
| 86 |
+
|
| 87 |
def parse_alto_xml_for_text(xml_file_path):
|
| 88 |
"""
|
| 89 |
Parses an ALTO XML file to extract text content.
|
|
|
|
| 91 |
- full_text (str): All extracted text concatenated.
|
| 92 |
"""
|
| 93 |
full_text_lines = []
|
| 94 |
+
|
| 95 |
if not xml_file_path or not os.path.exists(xml_file_path):
|
| 96 |
return "Error: XML file not provided or does not exist."
|
| 97 |
|
|
|
|
| 100 |
tree = ET.parse(xml_file_path)
|
| 101 |
root = tree.getroot()
|
| 102 |
|
| 103 |
+
for text_line in root.findall(f".//{ns_prefix}TextLine"):
|
| 104 |
line_text_parts = []
|
| 105 |
+
for string_element in text_line.findall(f"{ns_prefix}String"):
|
| 106 |
+
text = string_element.get("CONTENT")
|
| 107 |
if text:
|
| 108 |
line_text_parts.append(text)
|
| 109 |
if line_text_parts:
|
| 110 |
full_text_lines.append(" ".join(line_text_parts))
|
| 111 |
+
|
| 112 |
return "\n".join(full_text_lines)
|
| 113 |
|
| 114 |
except ET.ParseError as e:
|
|
|
|
| 116 |
except Exception as e:
|
| 117 |
return f"An unexpected error occurred during XML parsing: {e}"
|
| 118 |
|
| 119 |
+
|
| 120 |
def parse_xml_for_text(xml_file_path):
|
| 121 |
"""
|
| 122 |
Main function to parse XML files, automatically detecting the format.
|
|
|
|
| 126 |
|
| 127 |
try:
|
| 128 |
_, xml_format = get_xml_namespace(xml_file_path)
|
| 129 |
+
|
| 130 |
+
if xml_format == "PAGE":
|
| 131 |
return parse_page_xml_for_text(xml_file_path)
|
| 132 |
+
elif xml_format == "ALTO":
|
| 133 |
return parse_alto_xml_for_text(xml_file_path)
|
| 134 |
else:
|
| 135 |
return f"Error: Unsupported XML format. Expected ALTO or PAGE XML."
|
| 136 |
+
|
| 137 |
except Exception as e:
|
| 138 |
return f"Error determining XML format: {str(e)}"
|
| 139 |
|
| 140 |
+
|
| 141 |
@spaces.GPU
|
| 142 |
def predict(pil_image):
|
| 143 |
"""Performs OCR prediction using the Hugging Face model."""
|
| 144 |
global HF_PIPE, MODEL_LOAD_ERROR_MSG
|
| 145 |
|
| 146 |
if HF_PIPE is None:
|
| 147 |
+
error_to_report = (
|
| 148 |
+
MODEL_LOAD_ERROR_MSG
|
| 149 |
+
if MODEL_LOAD_ERROR_MSG
|
| 150 |
+
else "OCR model could not be initialized."
|
| 151 |
+
)
|
| 152 |
raise RuntimeError(error_to_report)
|
| 153 |
|
| 154 |
# Format the message in the expected structure
|
|
|
|
| 157 |
"role": "user",
|
| 158 |
"content": [
|
| 159 |
{"type": "image", "image": pil_image},
|
| 160 |
+
{
|
| 161 |
+
"type": "text",
|
| 162 |
+
"text": "Return the plain text representation of this document as if you were reading it naturally.\n",
|
| 163 |
+
},
|
| 164 |
+
],
|
| 165 |
}
|
| 166 |
]
|
| 167 |
|
| 168 |
# Use the pipeline with the properly formatted messages
|
| 169 |
+
return HF_PIPE(messages, max_new_tokens=8096)
|
| 170 |
+
|
| 171 |
|
| 172 |
def run_hf_ocr(image_path):
|
| 173 |
"""
|
|
|
|
| 175 |
"""
|
| 176 |
if image_path is None:
|
| 177 |
return "No image provided for OCR."
|
| 178 |
+
|
| 179 |
try:
|
| 180 |
pil_image = Image.open(image_path).convert("RGB")
|
| 181 |
+
ocr_results = predict(pil_image) # predict handles model loading and inference
|
| 182 |
+
|
| 183 |
# Parse the output based on the user's example structure
|
| 184 |
+
if (
|
| 185 |
+
isinstance(ocr_results, list)
|
| 186 |
+
and ocr_results
|
| 187 |
+
and "generated_text" in ocr_results[0]
|
| 188 |
+
):
|
| 189 |
+
generated_content = ocr_results[0]["generated_text"]
|
| 190 |
+
|
| 191 |
if isinstance(generated_content, str):
|
| 192 |
return generated_content
|
| 193 |
|
| 194 |
if isinstance(generated_content, list) and generated_content:
|
| 195 |
if assistant_message := next(
|
| 196 |
(
|
| 197 |
+
msg["content"]
|
| 198 |
for msg in reversed(generated_content)
|
| 199 |
if isinstance(msg, dict)
|
| 200 |
+
and msg.get("role") == "assistant"
|
| 201 |
+
and "content" in msg
|
| 202 |
),
|
| 203 |
None,
|
| 204 |
):
|
| 205 |
return assistant_message
|
| 206 |
+
|
| 207 |
# Fallback if the specific assistant message structure isn't found but there's content
|
| 208 |
+
if (
|
| 209 |
+
isinstance(generated_content[0], dict)
|
| 210 |
+
and "content" in generated_content[0]
|
| 211 |
+
):
|
| 212 |
+
if (
|
| 213 |
+
len(generated_content) > 1
|
| 214 |
+
and isinstance(generated_content[1], dict)
|
| 215 |
+
and "content" in generated_content[1]
|
| 216 |
+
):
|
| 217 |
+
return generated_content[1][
|
| 218 |
+
"content"
|
| 219 |
+
] # Assuming second part is assistant
|
| 220 |
+
else:
|
| 221 |
+
return generated_content[0]["content"]
|
| 222 |
|
| 223 |
print(f"Unexpected OCR output structure from HF model: {ocr_results}")
|
| 224 |
return "Error: Could not parse OCR model output. Check console."
|
| 225 |
+
|
| 226 |
else:
|
| 227 |
print(f"Unexpected OCR output structure from HF model: {ocr_results}")
|
| 228 |
return "Error: OCR model did not return expected output. Check console."
|
| 229 |
|
| 230 |
+
except RuntimeError as e: # Catch model loading/initialization errors from predict
|
| 231 |
return str(e)
|
| 232 |
except Exception as e:
|
| 233 |
print(f"Error during Hugging Face OCR processing: {e}")
|
| 234 |
return f"Error during Hugging Face OCR: {str(e)}"
|
| 235 |
|
| 236 |
+
|
| 237 |
# --- Gradio Interface Function ---
|
| 238 |
|
| 239 |
+
|
| 240 |
def process_files(image_path, xml_path):
|
| 241 |
"""
|
| 242 |
Main function for the Gradio interface.
|
|
|
|
| 252 |
img_to_display = Image.open(image_path).convert("RGB")
|
| 253 |
hf_ocr_text_output = run_hf_ocr(image_path)
|
| 254 |
except Exception as e:
|
| 255 |
+
img_to_display = None # Clear image if it failed to load
|
| 256 |
hf_ocr_text_output = f"Error loading image or running HF OCR: {e}"
|
| 257 |
else:
|
| 258 |
hf_ocr_text_output = "Please upload an image to perform OCR."
|
|
|
|
| 261 |
xml_text_output = parse_xml_for_text(xml_path)
|
| 262 |
else:
|
| 263 |
xml_text_output = "No XML file uploaded."
|
| 264 |
+
|
| 265 |
# If only XML is provided without an image
|
| 266 |
if not image_path and xml_path:
|
| 267 |
+
img_to_display = None # No image to display
|
| 268 |
hf_ocr_text_output = "Upload an image to perform OCR."
|
| 269 |
|
| 270 |
return img_to_display, xml_text_output, hf_ocr_text_output
|
|
|
|
| 281 |
|
| 282 |
with gr.Row():
|
| 283 |
with gr.Column(scale=1):
|
| 284 |
+
image_input = gr.File(
|
| 285 |
+
label="Upload Image (PNG, JPG, etc.)", type="filepath"
|
| 286 |
+
)
|
| 287 |
+
xml_input = gr.File(
|
| 288 |
+
label="Upload XML File (Optional, ALTO or PAGE format)", type="filepath"
|
| 289 |
+
)
|
| 290 |
submit_button = gr.Button("Process Image and XML", variant="primary")
|
| 291 |
|
| 292 |
with gr.Row():
|
| 293 |
with gr.Column(scale=1):
|
| 294 |
+
output_image_display = gr.Image(
|
| 295 |
+
label="Uploaded Image", type="pil", interactive=False
|
| 296 |
+
)
|
| 297 |
with gr.Column(scale=1):
|
| 298 |
+
hf_ocr_output_textbox = gr.Markdown(
|
| 299 |
+
label="OCR Output (Hugging Face Model)",
|
| 300 |
+
show_copy_button=True,
|
|
|
|
|
|
|
| 301 |
)
|
| 302 |
xml_output_textbox = gr.Textbox(
|
| 303 |
+
label="Text from XML",
|
| 304 |
+
lines=15,
|
| 305 |
interactive=False,
|
| 306 |
+
show_copy_button=True,
|
| 307 |
)
|
| 308 |
+
|
| 309 |
submit_button.click(
|
| 310 |
fn=process_files,
|
| 311 |
inputs=[image_input, xml_input],
|
| 312 |
+
outputs=[output_image_display, xml_output_textbox, hf_ocr_output_textbox],
|
| 313 |
)
|
| 314 |
+
|
| 315 |
gr.Markdown("---")
|
| 316 |
gr.Markdown("### Example ALTO XML Snippet (for `String` element extraction):")
|
| 317 |
gr.Code(
|
| 318 |
value=(
|
| 319 |
+
"""<alto xmlns="http://www.loc.gov/standards/alto/v3/alto.xsd">
|
| 320 |
<Description>...</Description>
|
| 321 |
<Styles>...</Styles>
|
| 322 |
<Layout>
|
|
|
|
| 337 |
</Layout>
|
| 338 |
</alto>"""
|
| 339 |
),
|
| 340 |
+
interactive=False,
|
| 341 |
)
|
| 342 |
|
| 343 |
if __name__ == "__main__":
|
| 344 |
# Removed dummy file creation as it's less relevant for single file focus
|
| 345 |
print("Attempting to launch Gradio demo...")
|
| 346 |
+
print(
|
| 347 |
+
"If the Hugging Face model is large, initial startup might take some time due to model download/loading (on first OCR attempt)."
|
| 348 |
+
)
|
| 349 |
+
demo.launch()
|