Spaces:
Runtime error
Runtime error
Commit
Β·
3ef94a5
1
Parent(s):
0cd2bb2
fix
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ from datetime import datetime
|
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
-
from huggingface_hub import CommitScheduler,
|
| 11 |
from openai import OpenAI
|
| 12 |
|
| 13 |
from prompts import basic_prompt, detailed_genre_description_prompt
|
|
@@ -16,6 +16,8 @@ from theme import TufteInspired
|
|
| 16 |
# Ensure you're logged in to Hugging Face
|
| 17 |
login(os.getenv("HF_TOKEN"))
|
| 18 |
|
|
|
|
|
|
|
| 19 |
client = OpenAI(
|
| 20 |
base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
|
| 21 |
api_key=get_token(),
|
|
@@ -25,13 +27,11 @@ client = OpenAI(
|
|
| 25 |
dataset_folder = Path("dataset")
|
| 26 |
dataset_folder.mkdir(exist_ok=True)
|
| 27 |
|
| 28 |
-
|
| 29 |
# Function to get the latest dataset file
|
| 30 |
def get_latest_dataset_file():
|
| 31 |
files = list(dataset_folder.glob("data_*.jsonl"))
|
| 32 |
return max(files, key=os.path.getctime) if files else None
|
| 33 |
|
| 34 |
-
|
| 35 |
# Check for existing dataset and create or append to it
|
| 36 |
if latest_file := get_latest_dataset_file():
|
| 37 |
dataset_file = latest_file
|
|
@@ -47,26 +47,23 @@ scheduler = CommitScheduler(
|
|
| 47 |
repo_type="dataset",
|
| 48 |
folder_path=dataset_folder,
|
| 49 |
path_in_repo="data",
|
| 50 |
-
every=1, # Upload every
|
| 51 |
)
|
| 52 |
|
| 53 |
-
#
|
| 54 |
votes = {}
|
| 55 |
|
| 56 |
-
|
| 57 |
def generate_prompt():
|
| 58 |
if random.choice([True, False]):
|
| 59 |
return detailed_genre_description_prompt()
|
| 60 |
else:
|
| 61 |
return basic_prompt()
|
| 62 |
|
| 63 |
-
|
| 64 |
def get_and_store_prompt():
|
| 65 |
prompt = generate_prompt()
|
| 66 |
print(prompt) # Keep this for debugging
|
| 67 |
return prompt
|
| 68 |
|
| 69 |
-
|
| 70 |
def generate_blurb(prompt):
|
| 71 |
max_tokens = random.randint(100, 1000)
|
| 72 |
chat_completion = client.chat.completions.create(
|
|
@@ -82,19 +79,16 @@ def generate_blurb(prompt):
|
|
| 82 |
full_text += message.choices[0].delta.content
|
| 83 |
yield full_text
|
| 84 |
|
| 85 |
-
|
| 86 |
def generate_vote_id(user_id, blurb):
|
| 87 |
-
# Create a unique identifier for this vote opportunity
|
| 88 |
return hashlib.md5(f"{user_id}:{blurb}".encode()).hexdigest()
|
| 89 |
|
| 90 |
-
|
| 91 |
-
# Modified log_blurb_and_vote function
|
| 92 |
def log_blurb_and_vote(prompt, blurb, vote, user_info: gr.OAuthProfile | None, *args):
|
| 93 |
user_id = user_info.username if user_info is not None else str(uuid.uuid4())
|
| 94 |
vote_id = generate_vote_id(user_id, blurb)
|
| 95 |
|
| 96 |
if vote_id in votes:
|
| 97 |
gr.Info("You've already voted on this blurb!")
|
|
|
|
| 98 |
|
| 99 |
votes[vote_id] = vote
|
| 100 |
|
|
@@ -108,9 +102,9 @@ def log_blurb_and_vote(prompt, blurb, vote, user_info: gr.OAuthProfile | None, *
|
|
| 108 |
with scheduler.lock:
|
| 109 |
with dataset_file.open("a") as f:
|
| 110 |
f.write(json.dumps(log_entry) + "\n")
|
|
|
|
| 111 |
gr.Info("Thank you for voting! Your feedback will be synced to the dataset.")
|
| 112 |
-
return f"Logged: {vote} by user {user_id}"
|
| 113 |
-
|
| 114 |
|
| 115 |
# Create custom theme
|
| 116 |
tufte_theme = TufteInspired()
|
|
@@ -123,7 +117,6 @@ with gr.Blocks(theme=tufte_theme) as demo:
|
|
| 123 |
Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://huggingface.co/datasets/your-username/your-dataset-repo">this</a> Hugging Face dataset</p>"""
|
| 124 |
)
|
| 125 |
|
| 126 |
-
# Add the login button
|
| 127 |
with gr.Row():
|
| 128 |
login_btn = gr.LoginButton(size="sm")
|
| 129 |
with gr.Row():
|
|
@@ -137,12 +130,12 @@ with gr.Blocks(theme=tufte_theme) as demo:
|
|
| 137 |
upvote_btn = gr.Button("π would read")
|
| 138 |
downvote_btn = gr.Button("π wouldn't read")
|
| 139 |
|
| 140 |
-
vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=
|
| 141 |
|
| 142 |
def generate_and_show(prompt, user_info):
|
| 143 |
-
#
|
| 144 |
-
global votes
|
| 145 |
-
votes = {}
|
| 146 |
return "Generating...", gr.Row.update(visible=False), user_info
|
| 147 |
|
| 148 |
def show_voting_buttons(blurb):
|
|
@@ -164,7 +157,7 @@ with gr.Blocks(theme=tufte_theme) as demo:
|
|
| 164 |
gr.Textbox(value="upvote", visible=False),
|
| 165 |
user_state,
|
| 166 |
],
|
| 167 |
-
outputs=vote_output,
|
| 168 |
)
|
| 169 |
downvote_btn.click(
|
| 170 |
log_blurb_and_vote,
|
|
@@ -174,7 +167,7 @@ with gr.Blocks(theme=tufte_theme) as demo:
|
|
| 174 |
gr.Textbox(value="downvote", visible=False),
|
| 175 |
user_state,
|
| 176 |
],
|
| 177 |
-
outputs=vote_output,
|
| 178 |
)
|
| 179 |
|
| 180 |
if __name__ == "__main__":
|
|
|
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
+
from huggingface_hub import CommitScheduler, get_token, login
|
| 11 |
from openai import OpenAI
|
| 12 |
|
| 13 |
from prompts import basic_prompt, detailed_genre_description_prompt
|
|
|
|
| 16 |
# Ensure you're logged in to Hugging Face
|
| 17 |
login(os.getenv("HF_TOKEN"))
|
| 18 |
|
| 19 |
+
|
| 20 |
+
|
| 21 |
client = OpenAI(
|
| 22 |
base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
|
| 23 |
api_key=get_token(),
|
|
|
|
| 27 |
dataset_folder = Path("dataset")
|
| 28 |
dataset_folder.mkdir(exist_ok=True)
|
| 29 |
|
|
|
|
| 30 |
# Function to get the latest dataset file
|
| 31 |
def get_latest_dataset_file():
|
| 32 |
files = list(dataset_folder.glob("data_*.jsonl"))
|
| 33 |
return max(files, key=os.path.getctime) if files else None
|
| 34 |
|
|
|
|
| 35 |
# Check for existing dataset and create or append to it
|
| 36 |
if latest_file := get_latest_dataset_file():
|
| 37 |
dataset_file = latest_file
|
|
|
|
| 47 |
repo_type="dataset",
|
| 48 |
folder_path=dataset_folder,
|
| 49 |
path_in_repo="data",
|
| 50 |
+
every=1, # Upload every minute
|
| 51 |
)
|
| 52 |
|
| 53 |
+
# Global dictionary to store votes
|
| 54 |
votes = {}
|
| 55 |
|
|
|
|
| 56 |
def generate_prompt():
|
| 57 |
if random.choice([True, False]):
|
| 58 |
return detailed_genre_description_prompt()
|
| 59 |
else:
|
| 60 |
return basic_prompt()
|
| 61 |
|
|
|
|
| 62 |
def get_and_store_prompt():
|
| 63 |
prompt = generate_prompt()
|
| 64 |
print(prompt) # Keep this for debugging
|
| 65 |
return prompt
|
| 66 |
|
|
|
|
| 67 |
def generate_blurb(prompt):
|
| 68 |
max_tokens = random.randint(100, 1000)
|
| 69 |
chat_completion = client.chat.completions.create(
|
|
|
|
| 79 |
full_text += message.choices[0].delta.content
|
| 80 |
yield full_text
|
| 81 |
|
|
|
|
| 82 |
def generate_vote_id(user_id, blurb):
|
|
|
|
| 83 |
return hashlib.md5(f"{user_id}:{blurb}".encode()).hexdigest()
|
| 84 |
|
|
|
|
|
|
|
| 85 |
def log_blurb_and_vote(prompt, blurb, vote, user_info: gr.OAuthProfile | None, *args):
|
| 86 |
user_id = user_info.username if user_info is not None else str(uuid.uuid4())
|
| 87 |
vote_id = generate_vote_id(user_id, blurb)
|
| 88 |
|
| 89 |
if vote_id in votes:
|
| 90 |
gr.Info("You've already voted on this blurb!")
|
| 91 |
+
return None, gr.Row.update(visible=False)
|
| 92 |
|
| 93 |
votes[vote_id] = vote
|
| 94 |
|
|
|
|
| 102 |
with scheduler.lock:
|
| 103 |
with dataset_file.open("a") as f:
|
| 104 |
f.write(json.dumps(log_entry) + "\n")
|
| 105 |
+
|
| 106 |
gr.Info("Thank you for voting! Your feedback will be synced to the dataset.")
|
| 107 |
+
return f"Logged: {vote} by user {user_id}", gr.Row.update(visible=False)
|
|
|
|
| 108 |
|
| 109 |
# Create custom theme
|
| 110 |
tufte_theme = TufteInspired()
|
|
|
|
| 117 |
Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://huggingface.co/datasets/your-username/your-dataset-repo">this</a> Hugging Face dataset</p>"""
|
| 118 |
)
|
| 119 |
|
|
|
|
| 120 |
with gr.Row():
|
| 121 |
login_btn = gr.LoginButton(size="sm")
|
| 122 |
with gr.Row():
|
|
|
|
| 130 |
upvote_btn = gr.Button("π would read")
|
| 131 |
downvote_btn = gr.Button("π wouldn't read")
|
| 132 |
|
| 133 |
+
vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=True)
|
| 134 |
|
| 135 |
def generate_and_show(prompt, user_info):
|
| 136 |
+
# Optionally clear votes for the previous blurb if needed
|
| 137 |
+
# global votes
|
| 138 |
+
# votes = {k: v for k, v in votes.items() if not k.endswith(hash(previous_blurb))}
|
| 139 |
return "Generating...", gr.Row.update(visible=False), user_info
|
| 140 |
|
| 141 |
def show_voting_buttons(blurb):
|
|
|
|
| 157 |
gr.Textbox(value="upvote", visible=False),
|
| 158 |
user_state,
|
| 159 |
],
|
| 160 |
+
outputs=[vote_output, voting_row],
|
| 161 |
)
|
| 162 |
downvote_btn.click(
|
| 163 |
log_blurb_and_vote,
|
|
|
|
| 167 |
gr.Textbox(value="downvote", visible=False),
|
| 168 |
user_state,
|
| 169 |
],
|
| 170 |
+
outputs=[vote_output, voting_row],
|
| 171 |
)
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|