Spaces:
Build error
Build error
Update app.py
Browse filesTry using TorchAO for quantization...
app.py
CHANGED
|
@@ -3,16 +3,16 @@ import gc
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
# import torch
|
| 6 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
|
| 8 |
-
# # quant_config = HqqConfig(nbits=8, group_size=64)
|
| 9 |
|
| 10 |
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
|
| 11 |
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
# print("Loading tokenizer & model…")
|
| 14 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 15 |
-
# # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)
|
| 16 |
|
| 17 |
# model =\
|
| 18 |
# AutoModelForCausalLM\
|
|
@@ -23,18 +23,38 @@ import gradio as gr
|
|
| 23 |
# # quantization_config=quant_config
|
| 24 |
# ).to(DEVICE)
|
| 25 |
|
| 26 |
-
#gc.collect()
|
| 27 |
|
| 28 |
#########
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
#########
|
| 39 |
|
| 40 |
# import gc
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
# import torch
|
| 6 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM #, HqqConfig
|
| 7 |
|
| 8 |
+
# # # quant_config = HqqConfig(nbits=8, group_size=64)
|
| 9 |
|
| 10 |
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
|
| 11 |
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
# print("Loading tokenizer & model…")
|
| 14 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 15 |
+
# # # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)
|
| 16 |
|
| 17 |
# model =\
|
| 18 |
# AutoModelForCausalLM\
|
|
|
|
| 23 |
# # quantization_config=quant_config
|
| 24 |
# ).to(DEVICE)
|
| 25 |
|
| 26 |
+
# gc.collect()
|
| 27 |
|
| 28 |
#########
|
| 29 |
|
| 30 |
+
import torch
|
| 31 |
+
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 32 |
+
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Float8WeightOnlyConfig
|
| 33 |
+
# quant_config = Float8WeightOnlyConfig()
|
| 34 |
+
quant_config = Float8DynamicActivationFloat8WeightConfig()
|
| 35 |
+
quantization_config = TorchAoConfig(quant_type=quant_config)
|
| 36 |
+
|
| 37 |
+
MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
|
| 38 |
+
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 40 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
MODEL_ID,
|
| 42 |
+
torch_dtype="auto",
|
| 43 |
+
device_map="auto",
|
| 44 |
+
quantization_config=quantization_config
|
| 45 |
)
|
| 46 |
|
| 47 |
+
|
| 48 |
+
#########
|
| 49 |
+
|
| 50 |
+
# from unsloth import FastLanguageModel
|
| 51 |
+
|
| 52 |
+
# model, tokenizer = FastLanguageModel.from_pretrained(
|
| 53 |
+
# "unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
|
| 54 |
+
# max_seq_length=128_000,
|
| 55 |
+
# load_in_4bit=True
|
| 56 |
+
# )
|
| 57 |
+
|
| 58 |
#########
|
| 59 |
|
| 60 |
# import gc
|