Update app.py
Browse filesUpdate to use fireworks...
app.py
CHANGED
|
@@ -1,21 +1,23 @@
|
|
| 1 |
from time import sleep
|
| 2 |
from os import getenv
|
|
|
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
import spaces
|
| 7 |
-
from openai import OpenAI
|
| 8 |
-
import torch
|
| 9 |
from duckduckgo_search import DDGS
|
| 10 |
import re
|
| 11 |
|
| 12 |
-
# Load the SmolLM model and tokenizer
|
| 13 |
-
# model_name = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
| 14 |
-
model_name = "HuggingFaceTB/SmolLM3-3B" # "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
| 15 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 16 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
-
model.to(device)
|
| 19 |
|
| 20 |
|
| 21 |
|
|
@@ -332,26 +334,66 @@ class Applicant:
|
|
| 332 |
# _output = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.6, top_k=40, top_p=0.9, repetition_penalty=1.1)
|
| 333 |
# return _output
|
| 334 |
|
| 335 |
-
def writing_task(prompt: str) -> str:
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
{
|
| 348 |
"role": "user",
|
| 349 |
"content": prompt
|
| 350 |
}
|
| 351 |
-
]
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
content_split = raw_response_content.split("</think>")
|
| 356 |
if len(content_split) > 1:
|
| 357 |
think = content_split[0]
|
|
@@ -362,6 +404,7 @@ def writing_task(prompt: str) -> str:
|
|
| 362 |
|
| 363 |
return content
|
| 364 |
|
|
|
|
| 365 |
def smol_lm_jd_process(job_description, system_prompt, max_new_tokens=512):
|
| 366 |
prompt = f"""<|im_start|>system
|
| 367 |
{system_prompt}<|im_end|>
|
|
|
|
| 1 |
from time import sleep
|
| 2 |
from os import getenv
|
| 3 |
+
from json import dumps
|
| 4 |
+
from requests import post
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
import spaces
|
| 9 |
+
# from openai import OpenAI
|
| 10 |
+
# import torch
|
| 11 |
from duckduckgo_search import DDGS
|
| 12 |
import re
|
| 13 |
|
| 14 |
+
# # Load the SmolLM model and tokenizer
|
| 15 |
+
# # model_name = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
| 16 |
+
# model_name = "HuggingFaceTB/SmolLM3-3B" # "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
| 17 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 18 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 19 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
+
# model.to(device)
|
| 21 |
|
| 22 |
|
| 23 |
|
|
|
|
| 334 |
# _output = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.6, top_k=40, top_p=0.9, repetition_penalty=1.1)
|
| 335 |
# return _output
|
| 336 |
|
| 337 |
+
# def writing_task(prompt: str) -> str:
|
| 338 |
+
# api_key = getenv("HF_TOKEN")
|
| 339 |
+
# if not api_key:
|
| 340 |
+
# raise ValueError("Huggingface token missing. Need to set HF_TOKEN, refer to https://discuss.huggingface.co/t/how-to-manage-user-secrets-and-api-keys/67948")
|
| 341 |
+
# client = OpenAI(
|
| 342 |
+
# base_url="https://router.huggingface.co/v1",
|
| 343 |
+
# api_key = getenv("HF_TOKEN")
|
| 344 |
+
# )
|
| 345 |
+
|
| 346 |
+
# completion = client.chat.completions.create(
|
| 347 |
+
# model="HuggingFaceTB/SmolLM3-3B:hf-inference",
|
| 348 |
+
# messages=[
|
| 349 |
+
# {
|
| 350 |
+
# "role": "user",
|
| 351 |
+
# "content": prompt
|
| 352 |
+
# }
|
| 353 |
+
# ],
|
| 354 |
+
# )
|
| 355 |
+
|
| 356 |
+
# raw_response_content = completion.choices[0].message.content
|
| 357 |
+
# content_split = raw_response_content.split("</think>")
|
| 358 |
+
# if len(content_split) > 1:
|
| 359 |
+
# think = content_split[0]
|
| 360 |
+
# content = "".join(content_split[1:])
|
| 361 |
+
# else:
|
| 362 |
+
# think = content_split[0]
|
| 363 |
+
# content = "No data found."
|
| 364 |
+
|
| 365 |
+
# return content
|
| 366 |
|
| 367 |
+
def writing_task(prompt: str) -> str:
|
| 368 |
+
url = "https://api.fireworks.ai/inference/v1/chat/completions"
|
| 369 |
+
model = "accounts/fireworks/models/qwen3-235b-a22b-thinking-2507"
|
| 370 |
+
# "accounts/fireworks/models/qwen3-235b-a22b-instruct-2507"
|
| 371 |
+
payload = {
|
| 372 |
+
"model": model,
|
| 373 |
+
"max_tokens": 32768,
|
| 374 |
+
"top_p": 1,
|
| 375 |
+
"top_k": 40,
|
| 376 |
+
"presence_penalty": 0,
|
| 377 |
+
"frequency_penalty": 0,
|
| 378 |
+
"temperature": 0.6,
|
| 379 |
+
"messages": [
|
| 380 |
{
|
| 381 |
"role": "user",
|
| 382 |
"content": prompt
|
| 383 |
}
|
| 384 |
+
]
|
| 385 |
+
}
|
| 386 |
+
headers = {
|
| 387 |
+
"Accept": "application/json",
|
| 388 |
+
"Content-Type": "application/json",
|
| 389 |
+
"Authorization": f"Bearer {FIREWORKS_API_TOKEN}" # Replace with your actual API key
|
| 390 |
+
}
|
| 391 |
+
|
| 392 |
+
response = post(url, headers=headers, data=dumps(payload))
|
| 393 |
+
response.raise_for_status()
|
| 394 |
+
raw_response_content =\
|
| 395 |
+
response.json()["choices"][0]["message"]["content"]
|
| 396 |
+
print(f"Content with reasoning: {raw_response_content}")
|
| 397 |
content_split = raw_response_content.split("</think>")
|
| 398 |
if len(content_split) > 1:
|
| 399 |
think = content_split[0]
|
|
|
|
| 404 |
|
| 405 |
return content
|
| 406 |
|
| 407 |
+
|
| 408 |
def smol_lm_jd_process(job_description, system_prompt, max_new_tokens=512):
|
| 409 |
prompt = f"""<|im_start|>system
|
| 410 |
{system_prompt}<|im_end|>
|