Spaces:
Runtime error
Runtime error
| # Copyright 2023 Google LLC | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from __future__ import annotations | |
| from typing import Any | |
| import torch | |
| import numpy as np | |
| from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.utils.torch_utils import is_compiled_module, is_torch_version | |
| from transformers import DPTImageProcessor, DPTForDepthEstimation | |
| from diffusers import StableDiffusionPanoramaPipeline | |
| from PIL import Image | |
| import copy | |
| T = torch.Tensor | |
| TN = T | None | |
| def get_depth_map(image: Image, feature_processor: DPTImageProcessor, depth_estimator: DPTForDepthEstimation) -> Image: | |
| image = feature_processor(images=image, return_tensors="pt").pixel_values.to("cuda") | |
| with torch.no_grad(), torch.autocast("cuda"): | |
| depth_map = depth_estimator(image).predicted_depth | |
| depth_map = torch.nn.functional.interpolate( | |
| depth_map.unsqueeze(1), | |
| size=(1024, 1024), | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
| depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
| depth_map = (depth_map - depth_min) / (depth_max - depth_min) | |
| image = torch.cat([depth_map] * 3, dim=1) | |
| image = image.permute(0, 2, 3, 1).cpu().numpy()[0] | |
| image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) | |
| return image | |
| def concat_zero_control(control_reisduel: T) -> T: | |
| b = control_reisduel.shape[0] // 2 | |
| zerso_reisduel = torch.zeros_like(control_reisduel[0:1]) | |
| return torch.cat((zerso_reisduel, control_reisduel[:b], zerso_reisduel, control_reisduel[b::])) | |
| def controlnet_call( | |
| pipeline: StableDiffusionXLControlNetPipeline, | |
| prompt: str | list[str] = None, | |
| prompt_2: str | list[str] | None = None, | |
| image: PipelineImageInput = None, | |
| height: int | None = None, | |
| width: int | None = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: str | list[str] | None = None, | |
| negative_prompt_2: str | list[str] | None = None, | |
| num_images_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: torch.Generator | None = None, | |
| latents: TN = None, | |
| prompt_embeds: TN = None, | |
| negative_prompt_embeds: TN = None, | |
| pooled_prompt_embeds: TN = None, | |
| negative_pooled_prompt_embeds: TN = None, | |
| cross_attention_kwargs: dict[str, Any] | None = None, | |
| controlnet_conditioning_scale: float | list[float] = 1.0, | |
| control_guidance_start: float | list[float] = 0.0, | |
| control_guidance_end: float | list[float] = 1.0, | |
| original_size: tuple[int, int] = None, | |
| crops_coords_top_left: tuple[int, int] = (0, 0), | |
| target_size: tuple[int, int] | None = None, | |
| negative_original_size: tuple[int, int] | None = None, | |
| negative_crops_coords_top_left: tuple[int, int] = (0, 0), | |
| negative_target_size:tuple[int, int] | None = None, | |
| clip_skip: int | None = None, | |
| ) -> list[Image]: | |
| controlnet = pipeline.controlnet._orig_mod if is_compiled_module(pipeline.controlnet) else pipeline.controlnet | |
| # align format for control guidance | |
| if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
| control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
| elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
| control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
| elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
| mult = 1 | |
| control_guidance_start, control_guidance_end = ( | |
| mult * [control_guidance_start], | |
| mult * [control_guidance_end], | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| pipeline.check_inputs( | |
| prompt, | |
| prompt_2, | |
| image, | |
| 1, | |
| negative_prompt, | |
| negative_prompt_2, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| controlnet_conditioning_scale, | |
| control_guidance_start, | |
| control_guidance_end, | |
| ) | |
| pipeline._guidance_scale = guidance_scale | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = pipeline._execution_device | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipeline.encode_prompt( | |
| prompt, | |
| prompt_2, | |
| device, | |
| 1, | |
| True, | |
| negative_prompt, | |
| negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=clip_skip, | |
| ) | |
| # 4. Prepare image | |
| if isinstance(controlnet, ControlNetModel): | |
| image = pipeline.prepare_image( | |
| image=image, | |
| width=width, | |
| height=height, | |
| batch_size=1, | |
| num_images_per_prompt=1, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=True, | |
| guess_mode=False, | |
| ) | |
| height, width = image.shape[-2:] | |
| image = torch.stack([image[0]] * num_images_per_prompt + [image[1]] * num_images_per_prompt) | |
| else: | |
| assert False | |
| # 5. Prepare timesteps | |
| pipeline.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = pipeline.scheduler.timesteps | |
| # 6. Prepare latent variables | |
| num_channels_latents = pipeline.unet.config.in_channels | |
| latents = pipeline.prepare_latents( | |
| 1 + num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6.5 Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| # 7. Prepare extra step kwargs. | |
| extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta) | |
| # 7.1 Create tensor stating which controlnets to keep | |
| controlnet_keep = [] | |
| for i in range(len(timesteps)): | |
| keeps = [ | |
| 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
| for s, e in zip(control_guidance_start, control_guidance_end) | |
| ] | |
| controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) | |
| # 7.2 Prepare added time ids & embeddings | |
| if isinstance(image, list): | |
| original_size = original_size or image[0].shape[-2:] | |
| else: | |
| original_size = original_size or image.shape[-2:] | |
| target_size = target_size or (height, width) | |
| add_text_embeds = pooled_prompt_embeds | |
| if pipeline.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = pipeline.text_encoder_2.config.projection_dim | |
| add_time_ids = pipeline._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| if negative_original_size is not None and negative_target_size is not None: | |
| negative_add_time_ids = pipeline._get_add_time_ids( | |
| negative_original_size, | |
| negative_crops_coords_top_left, | |
| negative_target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| else: | |
| negative_add_time_ids = add_time_ids | |
| prompt_embeds = torch.stack([prompt_embeds[0]] + [prompt_embeds[1]] * num_images_per_prompt) | |
| negative_prompt_embeds = torch.stack([negative_prompt_embeds[0]] + [negative_prompt_embeds[1]] * num_images_per_prompt) | |
| negative_pooled_prompt_embeds = torch.stack([negative_pooled_prompt_embeds[0]] + [negative_pooled_prompt_embeds[1]] * num_images_per_prompt) | |
| add_text_embeds = torch.stack([add_text_embeds[0]] + [add_text_embeds[1]] * num_images_per_prompt) | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
| add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device).repeat(1 + num_images_per_prompt, 1) | |
| batch_size = num_images_per_prompt + 1 | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order | |
| is_unet_compiled = is_compiled_module(pipeline.unet) | |
| is_controlnet_compiled = is_compiled_module(pipeline.controlnet) | |
| is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") | |
| added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| controlnet_prompt_embeds = torch.cat((prompt_embeds[1:batch_size], prompt_embeds[1:batch_size])) | |
| controlnet_added_cond_kwargs = {key: torch.cat((item[1:batch_size,], item[1:batch_size])) for key, item in added_cond_kwargs.items()} | |
| with pipeline.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # Relevant thread: | |
| # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 | |
| if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: | |
| torch._inductor.cudagraph_mark_step_begin() | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) | |
| latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t) | |
| # controlnet(s) inference | |
| control_model_input = torch.cat((latent_model_input[1:batch_size,], latent_model_input[batch_size+1:])) | |
| if isinstance(controlnet_keep[i], list): | |
| cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
| else: | |
| controlnet_cond_scale = controlnet_conditioning_scale | |
| if isinstance(controlnet_cond_scale, list): | |
| controlnet_cond_scale = controlnet_cond_scale[0] | |
| cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
| if cond_scale > 0: | |
| down_block_res_samples, mid_block_res_sample = pipeline.controlnet( | |
| control_model_input, | |
| t, | |
| encoder_hidden_states=controlnet_prompt_embeds, | |
| controlnet_cond=image, | |
| conditioning_scale=cond_scale, | |
| guess_mode=False, | |
| added_cond_kwargs=controlnet_added_cond_kwargs, | |
| return_dict=False, | |
| ) | |
| mid_block_res_sample = concat_zero_control(mid_block_res_sample) | |
| down_block_res_samples = [concat_zero_control(down_block_res_sample) for down_block_res_sample in down_block_res_samples] | |
| else: | |
| mid_block_res_sample = down_block_res_samples = None | |
| # predict the noise residual | |
| noise_pred = pipeline.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = pipeline.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0): | |
| progress_bar.update() | |
| # manually for max memory savings | |
| if pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast: | |
| pipeline.upcast_vae() | |
| latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype) | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| needs_upcasting = pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast | |
| if needs_upcasting: | |
| pipeline.upcast_vae() | |
| latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype) | |
| image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0] | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| pipeline.vae.to(dtype=torch.float16) | |
| if pipeline.watermark is not None: | |
| image = pipeline.watermark.apply_watermark(image) | |
| image = pipeline.image_processor.postprocess(image, output_type='pil') | |
| # Offload all models | |
| pipeline.maybe_free_model_hooks() | |
| return image | |
| def panorama_call( | |
| pipeline: StableDiffusionPanoramaPipeline, | |
| prompt: list[str], | |
| height: int | None = 512, | |
| width: int | None = 2048, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| view_batch_size: int = 1, | |
| negative_prompt: str | list[str] | None = None, | |
| num_images_per_prompt: int | None = 1, | |
| eta: float = 0.0, | |
| generator: torch.Generator | None = None, | |
| reference_latent: TN = None, | |
| latents: TN = None, | |
| prompt_embeds: TN = None, | |
| negative_prompt_embeds: TN = None, | |
| cross_attention_kwargs: dict[str, Any] | None = None, | |
| circular_padding: bool = False, | |
| clip_skip: int | None = None, | |
| stride=8 | |
| ) -> list[Image]: | |
| # 0. Default height and width to unet | |
| height = height or pipeline.unet.config.sample_size * pipeline.vae_scale_factor | |
| width = width or pipeline.unet.config.sample_size * pipeline.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| pipeline.check_inputs( | |
| prompt, height, width, 1, negative_prompt, prompt_embeds, negative_prompt_embeds | |
| ) | |
| device = pipeline._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| # 4. Prepare timesteps | |
| pipeline.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = pipeline.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = pipeline.unet.config.in_channels | |
| latents = pipeline.prepare_latents( | |
| 1, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if reference_latent is None: | |
| reference_latent = torch.randn(1, 4, pipeline.unet.config.sample_size, pipeline.unet.config.sample_size, | |
| generator=generator) | |
| reference_latent = reference_latent.to(device=device, dtype=pipeline.unet.dtype) | |
| # 6. Define panorama grid and initialize views for synthesis. | |
| # prepare batch grid | |
| views = pipeline.get_views(height, width, circular_padding=circular_padding, stride=stride) | |
| views_batch = [views[i: i + view_batch_size] for i in range(0, len(views), view_batch_size)] | |
| views_scheduler_status = [copy.deepcopy(pipeline.scheduler.__dict__)] * len(views_batch) | |
| count = torch.zeros_like(latents) | |
| value = torch.zeros_like(latents) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta) | |
| # 8. Denoising loop | |
| # Each denoising step also includes refinement of the latents with respect to the | |
| # views. | |
| num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds[:1], | |
| *[negative_prompt_embeds[1:]] * view_batch_size] | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds[:1], | |
| *[prompt_embeds[1:]] * view_batch_size] | |
| ) | |
| with pipeline.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| count.zero_() | |
| value.zero_() | |
| # generate views | |
| # Here, we iterate through different spatial crops of the latents and denoise them. These | |
| # denoised (latent) crops are then averaged to produce the final latent | |
| # for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the | |
| # MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113 | |
| # Batch views denoise | |
| for j, batch_view in enumerate(views_batch): | |
| vb_size = len(batch_view) | |
| # get the latents corresponding to the current view coordinates | |
| if circular_padding: | |
| latents_for_view = [] | |
| for h_start, h_end, w_start, w_end in batch_view: | |
| if w_end > latents.shape[3]: | |
| # Add circular horizontal padding | |
| latent_view = torch.cat( | |
| ( | |
| latents[:, :, h_start:h_end, w_start:], | |
| latents[:, :, h_start:h_end, : w_end - latents.shape[3]], | |
| ), | |
| dim=-1, | |
| ) | |
| else: | |
| latent_view = latents[:, :, h_start:h_end, w_start:w_end] | |
| latents_for_view.append(latent_view) | |
| latents_for_view = torch.cat(latents_for_view) | |
| else: | |
| latents_for_view = torch.cat( | |
| [ | |
| latents[:, :, h_start:h_end, w_start:w_end] | |
| for h_start, h_end, w_start, w_end in batch_view | |
| ] | |
| ) | |
| # rematch block's scheduler status | |
| pipeline.scheduler.__dict__.update(views_scheduler_status[j]) | |
| # expand the latents if we are doing classifier free guidance | |
| latent_reference_plus_view = torch.cat((reference_latent, latents_for_view)) | |
| latent_model_input = latent_reference_plus_view.repeat(2, 1, 1, 1) | |
| prompt_embeds_input = torch.cat([negative_prompt_embeds[: 1 + vb_size], | |
| prompt_embeds[: 1 + vb_size]] | |
| ) | |
| latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| # return | |
| noise_pred = pipeline.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds_input, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| # perform guidance | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latent_reference_plus_view = pipeline.scheduler.step( | |
| noise_pred, t, latent_reference_plus_view, **extra_step_kwargs | |
| ).prev_sample | |
| if j == len(views_batch) - 1: | |
| reference_latent = latent_reference_plus_view[:1] | |
| latents_denoised_batch = latent_reference_plus_view[1:] | |
| # save views scheduler status after sample | |
| views_scheduler_status[j] = copy.deepcopy(pipeline.scheduler.__dict__) | |
| # extract value from batch | |
| for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip( | |
| latents_denoised_batch.chunk(vb_size), batch_view | |
| ): | |
| if circular_padding and w_end > latents.shape[3]: | |
| # Case for circular padding | |
| value[:, :, h_start:h_end, w_start:] += latents_view_denoised[ | |
| :, :, h_start:h_end, : latents.shape[3] - w_start | |
| ] | |
| value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[ | |
| :, :, h_start:h_end, | |
| latents.shape[3] - w_start: | |
| ] | |
| count[:, :, h_start:h_end, w_start:] += 1 | |
| count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1 | |
| else: | |
| value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised | |
| count[:, :, h_start:h_end, w_start:w_end] += 1 | |
| # take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113 | |
| latents = torch.where(count > 0, value / count, value) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0): | |
| progress_bar.update() | |
| if circular_padding: | |
| image = pipeline.decode_latents_with_padding(latents) | |
| else: | |
| image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0] | |
| reference_image = pipeline.vae.decode(reference_latent / pipeline.vae.config.scaling_factor, return_dict=False)[0] | |
| # image, has_nsfw_concept = pipeline.run_safety_checker(image, device, prompt_embeds.dtype) | |
| # reference_image, _ = pipeline.run_safety_checker(reference_image, device, prompt_embeds.dtype) | |
| image = pipeline.image_processor.postprocess(image, output_type='pil', do_denormalize=[True]) | |
| reference_image = pipeline.image_processor.postprocess(reference_image, output_type='pil', do_denormalize=[True]) | |
| pipeline.maybe_free_model_hooks() | |
| return reference_image + image | |