Spaces:
Sleeping
Sleeping
dbleek
commited on
Commit
·
0d30c2b
1
Parent(s):
1e95f51
added new classifier
Browse files- milestone-3.py +25 -22
- patent_classifier_v4.pt +3 -0
milestone-3.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
|
|
|
| 3 |
from datasets import load_dataset
|
| 4 |
from transformers import AutoTokenizer
|
| 5 |
-
from transformers import AutoModelForSequenceClassification
|
| 6 |
from transformers import pipeline
|
| 7 |
|
| 8 |
# Load HUPD dataset
|
|
@@ -21,21 +21,24 @@ dataset_dict = load_dataset(
|
|
| 21 |
filtered_dataset = dataset_dict["validation"].filter(
|
| 22 |
lambda e: e["decision"] == "ACCEPTED" or e["decision"] == "REJECTED"
|
| 23 |
)
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
dataset = dataset.sort("patent_number")
|
| 26 |
|
| 27 |
# Create pipeline using model trainned on Colab
|
| 28 |
-
model = torch.load("
|
| 29 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
def load_patent():
|
| 34 |
selected_application = dataset.select([applications[st.session_state.id]])
|
| 35 |
st.session_state.abstract = selected_application["abstract"][0]
|
| 36 |
st.session_state.claims = selected_application["claims"][0]
|
| 37 |
st.session_state.title = selected_application["title"][0]
|
| 38 |
-
|
| 39 |
|
| 40 |
st.title("CS-GY-6613 Project Milestone 3")
|
| 41 |
|
|
@@ -44,11 +47,12 @@ applications = {}
|
|
| 44 |
for ds_index, example in enumerate(dataset):
|
| 45 |
applications.update({example["patent_number"]: ds_index})
|
| 46 |
st.selectbox(
|
| 47 |
-
"Select a patent application:", applications, on_change=
|
| 48 |
)
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
st.
|
|
|
|
| 52 |
|
| 53 |
# Classifier input form
|
| 54 |
with st.form("Input Form"):
|
|
@@ -61,16 +65,15 @@ with st.form("Input Form"):
|
|
| 61 |
submitted = st.form_submit_button("Get Patentability Score")
|
| 62 |
|
| 63 |
if submitted:
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
result = st.markdown(
|
| 73 |
-
"This text was classified as **{}** with a confidence score of **{}**.".format(
|
| 74 |
-
pred, score
|
| 75 |
-
)
|
| 76 |
)
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
+
from datasets import combine
|
| 4 |
from datasets import load_dataset
|
| 5 |
from transformers import AutoTokenizer
|
|
|
|
| 6 |
from transformers import pipeline
|
| 7 |
|
| 8 |
# Load HUPD dataset
|
|
|
|
| 21 |
filtered_dataset = dataset_dict["validation"].filter(
|
| 22 |
lambda e: e["decision"] == "ACCEPTED" or e["decision"] == "REJECTED"
|
| 23 |
)
|
| 24 |
+
seed = 88
|
| 25 |
+
accepted = filtered_dataset.filter(lambda e: e["decision"] == "ACCEPTED").shuffle(seed).select(range(5))
|
| 26 |
+
rejected = filtered_dataset.filter(lambda e: e["decision"] == "REJECTED").shuffle(seed).select(range(5))
|
| 27 |
+
dataset = combine.concatenate_datasets([accepted, rejected])
|
| 28 |
dataset = dataset.sort("patent_number")
|
| 29 |
|
| 30 |
# Create pipeline using model trainned on Colab
|
| 31 |
+
model = torch.load("patent_classifier_v4.pt", map_location=torch.device("cpu"))
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 33 |
+
tokenizer_kwargs = {'padding':True,'truncation':True}
|
| 34 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, **tokenizer_kwargs)
|
| 35 |
|
| 36 |
+
def load_data():
|
|
|
|
| 37 |
selected_application = dataset.select([applications[st.session_state.id]])
|
| 38 |
st.session_state.abstract = selected_application["abstract"][0]
|
| 39 |
st.session_state.claims = selected_application["claims"][0]
|
| 40 |
st.session_state.title = selected_application["title"][0]
|
| 41 |
+
st.session_state.decision = selected_application["decision"][0]
|
| 42 |
|
| 43 |
st.title("CS-GY-6613 Project Milestone 3")
|
| 44 |
|
|
|
|
| 47 |
for ds_index, example in enumerate(dataset):
|
| 48 |
applications.update({example["patent_number"]: ds_index})
|
| 49 |
st.selectbox(
|
| 50 |
+
"Select a sample patent application:", applications, on_change=load_data, key="id"
|
| 51 |
)
|
| 52 |
|
| 53 |
+
# Sample title/decision displayed for additional context only, not used with model
|
| 54 |
+
st.text_input("Sample Title", key="title", value=dataset[0]["title"])
|
| 55 |
+
st.text_input("Sample Decision", key="decision", value=dataset[0]["decision"])
|
| 56 |
|
| 57 |
# Classifier input form
|
| 58 |
with st.form("Input Form"):
|
|
|
|
| 65 |
submitted = st.form_submit_button("Get Patentability Score")
|
| 66 |
|
| 67 |
if submitted:
|
| 68 |
+
tokens = tokenizer(abstract, claims, return_tensors='pt', **tokenizer_kwargs)
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
output = model(**tokens)
|
| 71 |
+
logits = output.logits
|
| 72 |
+
pred = torch.softmax(logits, dim=1)
|
| 73 |
+
score = pred[0][1] # index 1 of softmax output is probability that decision = ACCEPTED
|
| 74 |
+
st.markdown(
|
| 75 |
+
"This application's patentability score is **{}**".format(score)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
patent_classifier_v4.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae0d471894ba6a7847254acda873e574837547b684b854eaa96efe3b593f8c2d
|
| 3 |
+
size 267882526
|