Spaces:
Configuration error
Configuration error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import torch | |
| from diffusers import UNet1DModel | |
| from diffusers.utils import floats_tensor, slow, torch_device | |
| from ..test_modeling_common import ModelTesterMixin | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class UNet1DModelTests(ModelTesterMixin, unittest.TestCase): | |
| model_class = UNet1DModel | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_features = 14 | |
| seq_len = 16 | |
| noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) | |
| time_step = torch.tensor([10] * batch_size).to(torch_device) | |
| return {"sample": noise, "timestep": time_step} | |
| def input_shape(self): | |
| return (4, 14, 16) | |
| def output_shape(self): | |
| return (4, 14, 16) | |
| def test_ema_training(self): | |
| pass | |
| def test_training(self): | |
| pass | |
| def test_determinism(self): | |
| super().test_determinism() | |
| def test_outputs_equivalence(self): | |
| super().test_outputs_equivalence() | |
| def test_from_save_pretrained(self): | |
| super().test_from_save_pretrained() | |
| def test_from_save_pretrained_variant(self): | |
| super().test_from_save_pretrained_variant() | |
| def test_model_from_pretrained(self): | |
| super().test_model_from_pretrained() | |
| def test_output(self): | |
| super().test_output() | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = { | |
| "block_out_channels": (32, 64, 128, 256), | |
| "in_channels": 14, | |
| "out_channels": 14, | |
| "time_embedding_type": "positional", | |
| "use_timestep_embedding": True, | |
| "flip_sin_to_cos": False, | |
| "freq_shift": 1.0, | |
| "out_block_type": "OutConv1DBlock", | |
| "mid_block_type": "MidResTemporalBlock1D", | |
| "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), | |
| "up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"), | |
| "act_fn": "mish", | |
| } | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_from_pretrained_hub(self): | |
| model, loading_info = UNet1DModel.from_pretrained( | |
| "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet" | |
| ) | |
| self.assertIsNotNone(model) | |
| self.assertEqual(len(loading_info["missing_keys"]), 0) | |
| model.to(torch_device) | |
| image = model(**self.dummy_input) | |
| assert image is not None, "Make sure output is not None" | |
| def test_output_pretrained(self): | |
| model = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet") | |
| torch.manual_seed(0) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed_all(0) | |
| num_features = model.in_channels | |
| seq_len = 16 | |
| noise = torch.randn((1, seq_len, num_features)).permute( | |
| 0, 2, 1 | |
| ) # match original, we can update values and remove | |
| time_step = torch.full((num_features,), 0) | |
| with torch.no_grad(): | |
| output = model(noise, time_step).sample.permute(0, 2, 1) | |
| output_slice = output[0, -3:, -3:].flatten() | |
| # fmt: off | |
| expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348]) | |
| # fmt: on | |
| self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3)) | |
| def test_forward_with_norm_groups(self): | |
| # Not implemented yet for this UNet | |
| pass | |
| def test_unet_1d_maestro(self): | |
| model_id = "harmonai/maestro-150k" | |
| model = UNet1DModel.from_pretrained(model_id, subfolder="unet") | |
| model.to(torch_device) | |
| sample_size = 65536 | |
| noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device) | |
| timestep = torch.tensor([1]).to(torch_device) | |
| with torch.no_grad(): | |
| output = model(noise, timestep).sample | |
| output_sum = output.abs().sum() | |
| output_max = output.abs().max() | |
| assert (output_sum - 224.0896).abs() < 4e-2 | |
| assert (output_max - 0.0607).abs() < 4e-4 | |
| class UNetRLModelTests(ModelTesterMixin, unittest.TestCase): | |
| model_class = UNet1DModel | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_features = 14 | |
| seq_len = 16 | |
| noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) | |
| time_step = torch.tensor([10] * batch_size).to(torch_device) | |
| return {"sample": noise, "timestep": time_step} | |
| def input_shape(self): | |
| return (4, 14, 16) | |
| def output_shape(self): | |
| return (4, 14, 1) | |
| def test_determinism(self): | |
| super().test_determinism() | |
| def test_outputs_equivalence(self): | |
| super().test_outputs_equivalence() | |
| def test_from_save_pretrained(self): | |
| super().test_from_save_pretrained() | |
| def test_from_save_pretrained_variant(self): | |
| super().test_from_save_pretrained_variant() | |
| def test_model_from_pretrained(self): | |
| super().test_model_from_pretrained() | |
| def test_output(self): | |
| # UNetRL is a value-function is different output shape | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1)) | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_ema_training(self): | |
| pass | |
| def test_training(self): | |
| pass | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = { | |
| "in_channels": 14, | |
| "out_channels": 14, | |
| "down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"], | |
| "up_block_types": [], | |
| "out_block_type": "ValueFunction", | |
| "mid_block_type": "ValueFunctionMidBlock1D", | |
| "block_out_channels": [32, 64, 128, 256], | |
| "layers_per_block": 1, | |
| "downsample_each_block": True, | |
| "use_timestep_embedding": True, | |
| "freq_shift": 1.0, | |
| "flip_sin_to_cos": False, | |
| "time_embedding_type": "positional", | |
| "act_fn": "mish", | |
| } | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_from_pretrained_hub(self): | |
| value_function, vf_loading_info = UNet1DModel.from_pretrained( | |
| "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function" | |
| ) | |
| self.assertIsNotNone(value_function) | |
| self.assertEqual(len(vf_loading_info["missing_keys"]), 0) | |
| value_function.to(torch_device) | |
| image = value_function(**self.dummy_input) | |
| assert image is not None, "Make sure output is not None" | |
| def test_output_pretrained(self): | |
| value_function, vf_loading_info = UNet1DModel.from_pretrained( | |
| "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function" | |
| ) | |
| torch.manual_seed(0) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed_all(0) | |
| num_features = value_function.in_channels | |
| seq_len = 14 | |
| noise = torch.randn((1, seq_len, num_features)).permute( | |
| 0, 2, 1 | |
| ) # match original, we can update values and remove | |
| time_step = torch.full((num_features,), 0) | |
| with torch.no_grad(): | |
| output = value_function(noise, time_step).sample | |
| # fmt: off | |
| expected_output_slice = torch.tensor([165.25] * seq_len) | |
| # fmt: on | |
| self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3)) | |
| def test_forward_with_norm_groups(self): | |
| # Not implemented yet for this UNet | |
| pass | |