File size: 45,450 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
{
  "title": "DBSCAN Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 multiple-choice questions designed to test and deepen your understanding of DBSCAN (Density-Based Spatial Clustering of Applications with Noise), covering fundamental concepts, parameters, advantages, limitations, and practical scenarios.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the main idea behind DBSCAN clustering?",
      "options": [
        "Clusters are dense regions separated by sparse regions",
        "All points are assigned to a cluster",
        "Clusters are linearly separable",
        "Clusters are formed by equal-sized groups"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN identifies clusters based on density: areas with many points form clusters, and sparse regions separate them."
    },
    {
      "id": 2,
      "questionText": "DBSCAN requires which key parameters?",
      "options": [
        "Number of clusters (k) only",
        "Learning rate and iterations",
        "Distance metric only",
        "Epsilon (eps) and Minimum points (minPts)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN uses eps (neighborhood radius) and minPts (minimum points to form a dense region) to define clusters."
    },
    {
      "id": 3,
      "questionText": "In DBSCAN, what is a 'core point'?",
      "options": [
        "Point on the boundary of clusters",
        "Point with no neighbors",
        "Point with at least minPts neighbors within eps",
        "Any point in the dataset"
      ],
      "correctAnswerIndex": 2,
      "explanation": "A core point has enough neighboring points within eps to be considered part of a dense cluster."
    },
    {
      "id": 4,
      "questionText": "In DBSCAN, what is a 'border point'?",
      "options": [
        "Point not in any cluster",
        "Point reachable from a core point but with fewer than minPts neighbors",
        "Point with more than minPts neighbors",
        "Centroid of a cluster"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Border points are density-reachable from core points but do not have enough neighbors themselves to be core points."
    },
    {
      "id": 5,
      "questionText": "In DBSCAN, what is a 'noise point'?",
      "options": [
        "Point with maximum density",
        "Point on the cluster centroid",
        "Point with exactly minPts neighbors",
        "Point not reachable from any core point"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Noise points are isolated points that do not belong to any cluster."
    },
    {
      "id": 6,
      "questionText": "Scenario: You have clusters of varying density. Challenge for DBSCAN?",
      "options": [
        "DBSCAN fails to run",
        "Always finds all clusters perfectly",
        "Clusters become linearly separable",
        "May merge dense clusters and miss sparse ones"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN struggles with clusters of differing densities because eps and minPts are global parameters."
    },
    {
      "id": 7,
      "questionText": "Scenario: Choosing eps too large. Effect?",
      "options": [
        "Algorithm fails",
        "Noise increases",
        "More clusters detected",
        "Clusters may merge; noise reduced"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Large eps connects distant points, possibly merging distinct clusters."
    },
    {
      "id": 8,
      "questionText": "Scenario: Choosing eps too small. Effect?",
      "options": [
        "Clusters merge",
        "Many points labeled as noise; clusters fragmented",
        "No effect",
        "EM applied instead"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Small eps results in fewer neighbors; many points cannot form clusters and are marked as noise."
    },
    {
      "id": 9,
      "questionText": "Scenario: Setting minPts too high. Effect?",
      "options": [
        "Clusters merge",
        "More points labeled as noise; small clusters ignored",
        "Algorithm fails",
        "Clusters increase"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High minPts requires dense regions to form clusters, excluding smaller or sparse clusters."
    },
    {
      "id": 10,
      "questionText": "Scenario: Setting minPts too low. Effect?",
      "options": [
        "DBSCAN fails",
        "Clusters disappear",
        "Many small clusters; noise reduced",
        "Clusters merge automatically"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Low minPts allows small groups to form clusters, potentially splitting natural clusters."
    },
    {
      "id": 11,
      "questionText": "Scenario: A border point is connected to multiple core points of different clusters. How is it assigned?",
      "options": [
        "Becomes noise automatically",
        "Forms a new cluster",
        "Assigned to any one cluster arbitrarily or first reachable",
        "Algorithm fails"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Border points can belong to one cluster; usually assigned to the first core point that reaches it."
    },
    {
      "id": 12,
      "questionText": "Scenario: You have 2D spatial data with noise. DBSCAN advantage?",
      "options": [
        "Detects clusters of arbitrary shape and identifies noise",
        "Requires clusters to be circular",
        "Sensitive to number of clusters parameter",
        "Assigns all points to clusters"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN works well for arbitrary shapes and identifies noise points."
    },
    {
      "id": 13,
      "questionText": "Scenario: Using Euclidean distance vs Manhattan distance in DBSCAN. Effect?",
      "options": [
        "Distance metric affects cluster shapes and eps choice",
        "DBSCAN fails",
        "No effect; clusters same",
        "Noise ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Different distance metrics affect neighborhood calculation, which can change clustering."
    },
    {
      "id": 14,
      "questionText": "Scenario: DBSCAN applied on high-dimensional data. Challenge?",
      "options": [
        "Distance measures become less meaningful (curse of dimensionality)",
        "Algorithm runs faster",
        "Clusters automatically reduce",
        "Noise decreases"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High dimensions can make points appear equidistant, complicating density estimation."
    },
    {
      "id": 15,
      "questionText": "Scenario: You have concentric clusters. DBSCAN challenge?",
      "options": [
        "May fail to separate inner and outer clusters depending on eps",
        "Always separates perfectly",
        "Clusters merge automatically",
        "Noise increases"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Density difference between inner and outer rings may cause DBSCAN to merge or mislabel clusters."
    },
    {
      "id": 16,
      "questionText": "Scenario: Using DBSCAN for geospatial clustering. Advantage?",
      "options": [
        "Finds clusters of arbitrary shape like regions or neighborhoods",
        "Clusters must be circular",
        "All points assigned",
        "Sensitive to number of clusters"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN can identify irregularly shaped spatial clusters without specifying cluster count."
    },
    {
      "id": 17,
      "questionText": "Scenario: You want clusters of varying density. DBSCAN limitation?",
      "options": [
        "Noise removed automatically",
        "Single global eps may not detect all clusters",
        "Algorithm adapts automatically",
        "All clusters found"
      ],
      "correctAnswerIndex": 1,
      "explanation": "DBSCAN uses a fixed eps, which can miss sparse clusters or merge dense clusters."
    },
    {
      "id": 18,
      "questionText": "Scenario: You apply DBSCAN on streaming data. Challenge?",
      "options": [
        "Noise ignored",
        "Automatically updates clusters",
        "All points reassigned automatically",
        "Standard DBSCAN is static; streaming adaptation required"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN is not incremental; modifications are needed for dynamic/streaming data."
    },
    {
      "id": 19,
      "questionText": "Scenario: Using DBSCAN for anomaly detection. Approach?",
      "options": [
        "Assign random labels",
        "Label points not in any cluster as anomalies",
        "Clusters merged manually",
        "Use all clusters for prediction"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Noise points are naturally flagged as outliers."
    },
    {
      "id": 20,
      "questionText": "Scenario: DBSCAN vs K-Means on arbitrary-shaped clusters. Advantage?",
      "options": [
        "DBSCAN fails for shapes",
        "Both perform equally",
        "K-Means better for arbitrary shapes",
        "DBSCAN can capture non-spherical clusters; K-Means cannot"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN works with clusters of any shape without requiring centroids."
    },
    {
      "id": 21,
      "questionText": "Scenario: Two clusters are close together but separated by sparse points. DBSCAN outcome?",
      "options": [
        "Fails to converge",
        "Marks everything as noise",
        "Correctly separates clusters using density differences",
        "Merges clusters automatically"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sparse points allow DBSCAN to distinguish dense clusters even if they are close."
    },
    {
      "id": 22,
      "questionText": "Scenario: Applying DBSCAN on 3D point cloud data. Advantage?",
      "options": [
        "Clusters must be spherical",
        "All points assigned to clusters",
        "Can find clusters of arbitrary 3D shape and ignore noise",
        "Requires predefining cluster centers"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN handles multi-dimensional data and can identify irregular clusters and noise."
    },
    {
      "id": 23,
      "questionText": "Scenario: DBSCAN uses Manhattan distance on grid data. Effect?",
      "options": [
        "Algorithm fails",
        "Noise increases automatically",
        "Clusters align with grid; eps choice differs",
        "No effect on clusters"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Distance metric changes the neighborhood definition, affecting cluster formation."
    },
    {
      "id": 24,
      "questionText": "Scenario: You want small but dense clusters. How to set parameters?",
      "options": [
        "Small eps and appropriate minPts",
        "Large eps",
        "Ignore parameters",
        "Large minPts"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Smaller eps ensures that small dense regions form separate clusters."
    },
    {
      "id": 25,
      "questionText": "Scenario: You have noisy sensor data. DBSCAN benefit?",
      "options": [
        "Clusters all points",
        "Fails with noise",
        "Requires K-Means preprocessing",
        "Automatically labels isolated points as noise"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN identifies low-density points as noise, avoiding misclassification."
    },
    {
      "id": 26,
      "questionText": "Scenario: Data with hierarchical cluster structure. Limitation of DBSCAN?",
      "options": [
        "Noise ignored",
        "All clusters merged",
        "Cannot detect hierarchy; only flat clusters",
        "Automatically finds hierarchy"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN provides flat clustering; hierarchical relationships are not captured."
    },
    {
      "id": 27,
      "questionText": "Scenario: Using DBSCAN for image segmentation. Advantage?",
      "options": [
        "Requires predefined number of segments",
        "All pixels assigned to clusters",
        "Identifies irregular regions and isolates noise",
        "Clusters must be circular"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN captures arbitrary-shaped regions and treats background/noisy pixels as noise."
    },
    {
      "id": 28,
      "questionText": "Scenario: You have clusters of different densities. How to adapt DBSCAN?",
      "options": [
        "Reduce dimensionality",
        "Use varying eps with methods like HDBSCAN",
        "Keep single global eps",
        "Increase minPts"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Standard DBSCAN struggles with varying densities; adaptive versions like HDBSCAN help."
    },
    {
      "id": 29,
      "questionText": "Scenario: DBSCAN fails to detect clusters in high-dimensional text embeddings. Solution?",
      "options": [
        "Increase minPts arbitrarily",
        "Use full covariance",
        "Reduce dimensions using PCA or t-SNE before clustering",
        "Ignore scaling"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Dimensionality reduction improves distance computation and density estimation."
    },
    {
      "id": 30,
      "questionText": "Scenario: Choosing minPts in DBSCAN. Rule of thumb?",
      "options": [
        "MinPts = 1 always",
        "MinPts = dataset size",
        "MinPts ignored",
        "MinPts ≥ dimensionality + 1"
      ],
      "correctAnswerIndex": 3,
      "explanation": "MinPts should be slightly larger than the data dimensionality for meaningful clusters."
    },
    {
      "id": 31,
      "questionText": "Scenario: DBSCAN applied on GPS data of taxis in a city. Best use case?",
      "options": [
        "Assign random clusters",
        "Identify high-density pickup/drop-off hotspots",
        "Detect only circular areas",
        "Cluster by taxi color"
      ],
      "correctAnswerIndex": 1,
      "explanation": "DBSCAN can detect dense regions where taxis frequently gather without assuming cluster shape."
    },
    {
      "id": 32,
      "questionText": "Scenario: You notice DBSCAN marks too many points as noise. Likely cause?",
      "options": [
        "Algorithm failed",
        "All clusters are too dense",
        "Distance metric wrong",
        "eps too small or minPts too high"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Small eps or high minPts can make points unable to form clusters, labeling them as noise."
    },
    {
      "id": 33,
      "questionText": "Scenario: DBSCAN applied to social network graph. Challenge?",
      "options": [
        "Clusters are always detected",
        "DBSCAN works directly on graph",
        "Noise ignored",
        "Graph edges may not correspond to meaningful distances; need transformation"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN requires distance metrics; graphs need embedding or distance conversion."
    },
    {
      "id": 34,
      "questionText": "Scenario: Using DBSCAN for anomaly detection in network traffic. How?",
      "options": [
        "Label low-density patterns as anomalies",
        "All high-traffic nodes flagged",
        "Randomly assign anomalies",
        "Clusters merged manually"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Low-density points correspond to unusual patterns, suitable for anomaly detection."
    },
    {
      "id": 35,
      "questionText": "Scenario: High-dimensional DBSCAN performance issue. Solution?",
      "options": [
        "Use dimensionality reduction or HDBSCAN",
        "Ignore distance metric",
        "Use K-Means instead",
        "Increase eps arbitrarily"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing dimensions or using hierarchical density clustering helps in high-dimensional spaces."
    },
    {
      "id": 36,
      "questionText": "Scenario: Clusters are elongated. DBSCAN vs K-Means?",
      "options": [
        "K-Means works better",
        "All points assigned to noise",
        "DBSCAN captures arbitrary shapes better",
        "Both fail"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN does not assume spherical clusters, so elongated shapes are captured well."
    },
    {
      "id": 37,
      "questionText": "Scenario: DBSCAN fails on variable-density clusters. Solution?",
      "options": [
        "Reduce minPts to 1",
        "Use HDBSCAN for adaptive density clustering",
        "Increase eps globally",
        "Ignore problem"
      ],
      "correctAnswerIndex": 1,
      "explanation": "HDBSCAN handles clusters with varying density better than standard DBSCAN."
    },
    {
      "id": 38,
      "questionText": "Scenario: You want reproducible DBSCAN results. Requirement?",
      "options": [
        "Ignore minPts",
        "Deterministic neighbor search and consistent distance metric",
        "Random initialization",
        "Vary eps each run"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Reproducibility requires deterministic calculations for neighborhoods and distances."
    },
    {
      "id": 39,
      "questionText": "Scenario: DBSCAN applied on time-series sensor readings. Approach?",
      "options": [
        "Use sliding windows to extract features before clustering",
        "Clusters automatically detected",
        "Apply DBSCAN on raw timestamps",
        "Ignore feature extraction"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Time-series features are extracted to represent temporal patterns for density-based clustering."
    },
    {
      "id": 40,
      "questionText": "Scenario: You need clusters and hierarchy. Limitation of DBSCAN?",
      "options": [
        "Noise ignored",
        "DBSCAN provides only flat clustering",
        "Automatically generates hierarchy",
        "Clusters nested by default"
      ],
      "correctAnswerIndex": 1,
      "explanation": "DBSCAN produces flat clusters; hierarchical relationships require extensions like HDBSCAN."
    },
    {
      "id": 41,
      "questionText": "Scenario: DBSCAN applied on customer purchase patterns. Advantage?",
      "options": [
        "Requires predefined cluster number",
        "Sensitive to initial seed",
        "Detects dense buying behavior groups and isolates rare patterns",
        "All points assigned"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN identifies dense purchasing patterns and separates anomalies naturally."
    },
    {
      "id": 42,
      "questionText": "Scenario: You want to tune DBSCAN eps parameter. Approach?",
      "options": [
        "MinPts adjustment only",
        "Always choose maximum distance",
        "Use k-distance graph to identify elbow point",
        "Randomly guess eps"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Plotting k-distance helps find a suitable eps where distances start increasing sharply."
    },
    {
      "id": 43,
      "questionText": "Scenario: DBSCAN with overlapping clusters. Effect?",
      "options": [
        "Points duplicated",
        "Clusters fail completely",
        "Overlap handled by density; border points assigned to one cluster",
        "Noise ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN assigns border points to a reachable cluster; soft assignment is not available."
    },
    {
      "id": 44,
      "questionText": "Scenario: Applying DBSCAN to text embeddings. Challenge?",
      "options": [
        "Noise ignored",
        "All points assigned to clusters",
        "DBSCAN always works",
        "High-dimensional distances may be less meaningful"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Distance measures in high dimensions can reduce effectiveness; dimensionality reduction helps."
    },
    {
      "id": 45,
      "questionText": "Scenario: Noise proportion is high. DBSCAN behavior?",
      "options": [
        "Many points labeled as noise; cluster detection limited",
        "Algorithm fails",
        "Clusters detected perfectly",
        "All points assigned to clusters"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High noise density can prevent formation of dense clusters."
    },
    {
      "id": 46,
      "questionText": "Scenario: DBSCAN on streaming data. Limitation?",
      "options": [
        "Standard DBSCAN is static; needs incremental adaptation",
        "All points reassigned automatically",
        "Noise ignored",
        "Automatically updates clusters"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN is not inherently incremental; streaming data requires modified algorithms."
    },
    {
      "id": 47,
      "questionText": "Scenario: DBSCAN vs K-Means for non-spherical clusters. Advantage?",
      "options": [
        "Both fail",
        "K-Means better",
        "Noise ignored",
        "DBSCAN detects arbitrary shapes; K-Means cannot"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN does not rely on centroid or spherical assumption."
    },
    {
      "id": 48,
      "questionText": "Scenario: You apply DBSCAN on noisy sensor readings. Outcome?",
      "options": [
        "Isolates isolated points as noise automatically",
        "Clusters all points",
        "Noise merged into clusters",
        "Algorithm fails"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Low-density or isolated points are correctly treated as noise."
    },
    {
      "id": 49,
      "questionText": "Scenario: Choosing distance metric affects DBSCAN. Why?",
      "options": [
        "All clusters merge",
        "No effect",
        "Neighborhood depends on distance; cluster shape affected",
        "Noise ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Different metrics change neighbor counts, affecting core points and cluster formation."
    },
    {
      "id": 50,
      "questionText": "Scenario: DBSCAN on highly skewed 2D data. Challenge?",
      "options": [
        "Clusters detected automatically",
        "Algorithm fails",
        "Fixed eps may not capture sparse areas",
        "Noise reduced"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Single eps cannot adapt to varying densities; sparse regions may be misclassified."
    },
    {
      "id": 51,
      "questionText": "Scenario: DBSCAN applied to customer segmentation with varying buying density. Issue?",
      "options": [
        "Noise eliminated automatically",
        "Clusters merged randomly",
        "All clusters detected perfectly",
        "Some smaller or sparser clusters may be missed"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN’s global eps struggles with clusters of different densities; adaptive methods recommended."
    },
    {
      "id": 52,
      "questionText": "Scenario: You want DBSCAN to detect small anomalies in large dataset. How to adjust?",
      "options": [
        "Increase eps arbitrarily",
        "Decrease minPts and eps appropriately",
        "Ignore small clusters",
        "Use K-Means instead"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Smaller minPts and eps allow DBSCAN to detect small dense regions representing anomalies."
    },
    {
      "id": 53,
      "questionText": "Scenario: Using DBSCAN for clustering Wi-Fi signals in a building. Advantage?",
      "options": [
        "Identifies dense signal regions and ignores noise",
        "All points assigned to clusters",
        "Requires number of clusters",
        "Clusters must be circular"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN can detect regions with strong signal density and label isolated weak signals as noise."
    },
    {
      "id": 54,
      "questionText": "Scenario: DBSCAN on image pixel intensities for segmentation. Outcome?",
      "options": [
        "Requires predefined cluster number",
        "Clusters must be circular",
        "All pixels assigned",
        "Arbitrary-shaped regions segmented; noise isolated"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN can segment regions of any shape and label scattered pixels as noise."
    },
    {
      "id": 55,
      "questionText": "Scenario: Using DBSCAN on 3D point cloud of a city. Advantage?",
      "options": [
        "Detects clusters like buildings, trees, and separates sparse points",
        "Noise merged into clusters",
        "All points assigned",
        "Clusters must be spherical"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN works in multi-dimensional data and identifies meaningful dense clusters."
    },
    {
      "id": 56,
      "questionText": "Scenario: DBSCAN fails with high-dimensional word embeddings. Solution?",
      "options": [
        "Apply dimensionality reduction before clustering",
        "Use K-Means",
        "Increase eps globally",
        "Ignore problem"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-dimensional spaces make distance less meaningful; reduction helps clustering performance."
    },
    {
      "id": 57,
      "questionText": "Scenario: Border points connected to multiple core points. Assignment?",
      "options": [
        "Assigned to one cluster reachable first",
        "Algorithm fails",
        "Assigned to all clusters simultaneously",
        "Become noise"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN assigns border points to a single cluster; typically the first reachable core point."
    },
    {
      "id": 58,
      "questionText": "Scenario: DBSCAN on streaming data. Limitation?",
      "options": [
        "Noise ignored",
        "Automatically updates clusters",
        "All points reassigned automatically",
        "Standard DBSCAN cannot update incrementally; adaptation needed"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Incremental or streaming adaptations of DBSCAN are required for dynamic datasets."
    },
    {
      "id": 59,
      "questionText": "Scenario: Clusters are elongated and dense. DBSCAN vs K-Means?",
      "options": [
        "Both fail",
        "K-Means better",
        "All points assigned to noise",
        "DBSCAN captures shape; K-Means fails with elongated clusters"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN’s density-based approach handles arbitrary shapes like elongated clusters well."
    },
    {
      "id": 60,
      "questionText": "Scenario: Choosing minPts parameter. Rule of thumb?",
      "options": [
        "minPts = dataset size",
        "minPts ≥ dimensionality + 1",
        "minPts = 1 always",
        "minPts ignored"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Choosing minPts slightly larger than data dimensionality ensures meaningful cluster formation."
    },
    {
      "id": 61,
      "questionText": "Scenario: DBSCAN applied to weather station locations. Advantage?",
      "options": [
        "All stations assigned",
        "Noise merged into clusters",
        "Detects dense station clusters and separates isolated stations as noise",
        "Clusters must be circular"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN can find groups of stations in dense regions while labeling isolated ones as noise."
    },
    {
      "id": 62,
      "questionText": "Scenario: DBSCAN applied to vehicle GPS tracks. Best outcome?",
      "options": [
        "All vehicles assigned to same cluster",
        "Requires predefined cluster number",
        "Clusters must be circular",
        "Detect hotspots of vehicle activity and identify sparse routes"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN identifies dense routes or locations and marks sparse movements as noise."
    },
    {
      "id": 63,
      "questionText": "Scenario: DBSCAN applied to detect fraudulent transactions. Advantage?",
      "options": [
        "All transactions clustered",
        "Isolates unusual low-density transactions as potential fraud",
        "Clusters merged arbitrarily",
        "Noise ignored"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Low-density points are flagged naturally, useful for anomaly detection in finance."
    },
    {
      "id": 64,
      "questionText": "Scenario: eps too large. Effect on clusters?",
      "options": [
        "Clusters may merge; noise reduced",
        "Noise increases",
        "More clusters detected",
        "Algorithm fails"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Large eps connects distant points, merging separate clusters and reducing noise."
    },
    {
      "id": 65,
      "questionText": "Scenario: eps too small. Effect on clusters?",
      "options": [
        "Clusters merge",
        "Noise decreases",
        "Many points labeled as noise; clusters fragmented",
        "Algorithm fails"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Small eps prevents points from forming dense clusters; many become noise."
    },
    {
      "id": 66,
      "questionText": "Scenario: High-dimensional clustering. DBSCAN limitation?",
      "options": [
        "Clusters detected perfectly",
        "All points assigned",
        "Distances lose meaning; density estimation difficult",
        "Noise ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "High dimensions make points appear equidistant, complicating density-based clustering."
    },
    {
      "id": 67,
      "questionText": "Scenario: Data with multiple density clusters. Solution?",
      "options": [
        "Use HDBSCAN for adaptive density clustering",
        "Increase eps globally",
        "Reduce minPts to 1",
        "Ignore problem"
      ],
      "correctAnswerIndex": 0,
      "explanation": "HDBSCAN adapts to varying densities, unlike standard DBSCAN."
    },
    {
      "id": 68,
      "questionText": "Scenario: Using DBSCAN on customer browsing patterns. Advantage?",
      "options": [
        "Noise ignored",
        "Requires predefined cluster number",
        "All points assigned",
        "Detects dense behavioral patterns and isolates outliers"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Dense browsing behaviors form clusters; rare patterns become noise."
    },
    {
      "id": 69,
      "questionText": "Scenario: Noise points in DBSCAN. Definition?",
      "options": [
        "Cluster centroids",
        "All points in clusters",
        "Points not reachable from any core point",
        "Points with minPts neighbors"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Noise points are isolated points not part of any cluster."
    },
    {
      "id": 70,
      "questionText": "Scenario: Choosing distance metric in DBSCAN. Effect?",
      "options": [
        "Affects neighborhood definition and cluster shape",
        "Noise ignored",
        "No effect",
        "All points merged"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The distance metric changes how neighbors are counted, affecting cluster formation."
    },
    {
      "id": 71,
      "questionText": "Scenario: DBSCAN applied to earthquake epicenters. Advantage?",
      "options": [
        "Clusters must be circular",
        "Detects clusters of seismic activity and isolates isolated events",
        "Noise merged into clusters",
        "All events assigned"
      ],
      "correctAnswerIndex": 1,
      "explanation": "DBSCAN identifies dense seismic regions and separates rare events as noise."
    },
    {
      "id": 72,
      "questionText": "Scenario: Varying eps across dataset. How to achieve?",
      "options": [
        "Ignore variation",
        "Random eps each run",
        "Use adaptive DBSCAN variants like HDBSCAN",
        "Standard DBSCAN suffices"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Adaptive algorithms adjust density thresholds to handle varying densities."
    },
    {
      "id": 73,
      "questionText": "Scenario: Applying DBSCAN on medical imaging. Benefit?",
      "options": [
        "Clusters must be spherical",
        "Requires fixed cluster number",
        "Detects regions of interest and separates background noise",
        "All pixels clustered"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN segments irregular shapes and isolates sparse/noisy regions."
    },
    {
      "id": 74,
      "questionText": "Scenario: Using DBSCAN for anomaly detection in IoT sensors. Approach?",
      "options": [
        "Ignore isolated readings",
        "Label low-density readings as anomalies",
        "Cluster all points",
        "Random assignment"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Isolated readings or sparse patterns naturally become noise, indicating anomalies."
    },
    {
      "id": 75,
      "questionText": "Scenario: DBSCAN on financial transactions. Noise points indicate?",
      "options": [
        "Noise merged",
        "All transactions are legitimate",
        "Potential fraudulent or unusual transactions",
        "Clusters merged"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sparse points in dense transaction space are flagged as unusual or fraudulent."
    },
    {
      "id": 76,
      "questionText": "Scenario: DBSCAN applied to traffic accident locations. Advantage?",
      "options": [
        "Identifies accident hotspots and isolates rare events",
        "All accidents assigned",
        "Noise merged into clusters",
        "Clusters must be circular"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN finds dense accident regions and treats isolated incidents as noise."
    },
    {
      "id": 77,
      "questionText": "Scenario: eps and minPts selection using k-distance plot. What is the elbow point?",
      "options": [
        "Minimum distance",
        "Random point",
        "Point where distance sharply increases, suitable for eps",
        "Maximum distance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The elbow in the k-distance graph indicates the transition from dense to sparse regions, guiding eps selection."
    },
    {
      "id": 78,
      "questionText": "Scenario: Border points connected to multiple clusters. Assignment in DBSCAN?",
      "options": [
        "Assigned to all clusters",
        "Become noise",
        "Assigned to the first reachable cluster",
        "Clusters merge automatically"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Border points are assigned to one cluster, typically the first one that reaches them."
    },
    {
      "id": 79,
      "questionText": "Scenario: DBSCAN on social media check-ins. Benefit?",
      "options": [
        "Clusters must be predefined",
        "All users assigned",
        "Noise ignored",
        "Detects popular locations and identifies sparse users"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN identifies dense activity areas and treats isolated check-ins as noise."
    },
    {
      "id": 80,
      "questionText": "Scenario: Standard DBSCAN fails on variable density data. Solution?",
      "options": [
        "Ignore the problem",
        "Increase eps globally",
        "Decrease minPts arbitrarily",
        "Use HDBSCAN for hierarchical density-based clustering"
      ],
      "correctAnswerIndex": 3,
      "explanation": "HDBSCAN adapts to varying density, unlike standard DBSCAN."
    },
    {
      "id": 81,
      "questionText": "Scenario: DBSCAN on genomic data. Advantage?",
      "options": [
        "Clusters must be circular",
        "All genes assigned",
        "Identifies dense gene clusters and isolates rare genes",
        "Noise merged"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN can identify dense gene expression patterns and separate sparse or rare genes as noise."
    },
    {
      "id": 82,
      "questionText": "Scenario: Choosing minPts too high. Effect?",
      "options": [
        "Algorithm fails",
        "Clusters merge",
        "Small clusters ignored; many points labeled noise",
        "More clusters detected"
      ],
      "correctAnswerIndex": 2,
      "explanation": "High minPts requires dense regions; sparse or small clusters are lost."
    },
    {
      "id": 83,
      "questionText": "Scenario: Choosing minPts too low. Effect?",
      "options": [
        "Many small clusters formed; noise reduced",
        "Clusters merge",
        "Algorithm fails",
        "All points noise"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Low minPts allows small groups to form clusters, potentially splitting natural clusters."
    },
    {
      "id": 84,
      "questionText": "Scenario: DBSCAN applied on customer location data. Advantage?",
      "options": [
        "Requires predefined cluster count",
        "All points assigned",
        "Clusters must be circular",
        "Identifies dense shopping areas and isolates isolated customers"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN captures dense shopping locations and labels scattered customers as noise."
    },
    {
      "id": 85,
      "questionText": "Scenario: High-dimensional text embeddings. DBSCAN limitation?",
      "options": [
        "Distances lose meaning; clusters may be unreliable",
        "Algorithm faster",
        "Noise ignored",
        "Clusters always detected"
      ],
      "correctAnswerIndex": 0,
      "explanation": "In high dimensions, distances are less discriminative, affecting density and clustering."
    },
    {
      "id": 86,
      "questionText": "Scenario: Using DBSCAN on image feature vectors. Benefit?",
      "options": [
        "Requires predefined cluster count",
        "All features assigned",
        "Groups similar image features and isolates outliers",
        "Clusters must be circular"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DBSCAN detects dense feature groups and treats isolated features as noise."
    },
    {
      "id": 87,
      "questionText": "Scenario: eps too small. Effect?",
      "options": [
        "Clusters fragmented; many points labeled noise",
        "Clusters merge",
        "All points assigned",
        "Algorithm fails"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small eps prevents formation of dense clusters; isolated points become noise."
    },
    {
      "id": 88,
      "questionText": "Scenario: eps too large. Effect?",
      "options": [
        "More clusters detected",
        "Algorithm fails",
        "Clusters merge; fewer noise points",
        "Noise increases"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Large eps connects distant points, merging separate clusters and reducing noise."
    },
    {
      "id": 89,
      "questionText": "Scenario: DBSCAN on irregularly shaped 2D clusters. Advantage?",
      "options": [
        "Clusters must be circular",
        "Captures arbitrary shapes unlike K-Means",
        "All points assigned",
        "Noise ignored"
      ],
      "correctAnswerIndex": 1,
      "explanation": "DBSCAN does not assume cluster shape, so it captures elongated or irregular clusters."
    },
    {
      "id": 90,
      "questionText": "Scenario: Border point connected to multiple core points. Assignment?",
      "options": [
        "Assigned to first reachable cluster",
        "Assigned to all clusters",
        "Clusters merge",
        "Becomes noise"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN assigns a border point to one cluster, typically the first core point that reaches it."
    },
    {
      "id": 91,
      "questionText": "Scenario: DBSCAN on IoT sensor anomaly detection. Advantage?",
      "options": [
        "Sparse readings flagged as anomalies automatically",
        "Noise ignored",
        "All readings clustered",
        "Clusters merged arbitrarily"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN labels low-density points as noise, which is useful for detecting anomalies."
    },
    {
      "id": 92,
      "questionText": "Scenario: DBSCAN with streaming data. Limitation?",
      "options": [
        "Needs adaptation; standard DBSCAN is static",
        "Noise ignored",
        "Automatically updates clusters",
        "All points reassigned automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN is not incremental; streaming or dynamic data requires modified algorithms."
    },
    {
      "id": 93,
      "questionText": "Scenario: Using DBSCAN on earthquake data. Benefit?",
      "options": [
        "Detects dense seismic zones; isolates rare events",
        "All events clustered",
        "Noise merged",
        "Clusters must be circular"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN identifies dense clusters of earthquakes and labels isolated events as noise."
    },
    {
      "id": 94,
      "questionText": "Scenario: Noise in DBSCAN definition?",
      "options": [
        "Cluster centroids",
        "Points not reachable from any core point",
        "Points with minPts neighbors",
        "All points assigned"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Noise points are isolated points not part of any cluster."
    },
    {
      "id": 95,
      "questionText": "Scenario: Varying density clusters. Best DBSCAN variant?",
      "options": [
        "Standard DBSCAN",
        "K-Means",
        "HDBSCAN",
        "Agglomerative clustering"
      ],
      "correctAnswerIndex": 2,
      "explanation": "HDBSCAN adapts to different densities and creates a hierarchy of clusters."
    },
    {
      "id": 96,
      "questionText": "Scenario: Choosing eps using k-distance plot. How?",
      "options": [
        "Select maximum distance",
        "Select value at elbow point where distances sharply rise",
        "Randomly select eps",
        "Select minimum distance"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The elbow point indicates the transition from dense to sparse points, guiding eps choice."
    },
    {
      "id": 97,
      "questionText": "Scenario: DBSCAN on customer behavior patterns. Benefit?",
      "options": [
        "Groups dense behavior patterns; isolates rare customers",
        "Requires fixed number of clusters",
        "Noise ignored",
        "All points assigned"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DBSCAN identifies dense behavioral clusters and labels rare behaviors as noise."
    },
    {
      "id": 98,
      "questionText": "Scenario: DBSCAN vs K-Means for non-spherical clusters. Advantage?",
      "options": [
        "K-Means better",
        "Noise ignored",
        "Both fail",
        "DBSCAN captures arbitrary shapes"
      ],
      "correctAnswerIndex": 3,
      "explanation": "DBSCAN does not assume cluster shape and handles irregular or elongated clusters."
    },
    {
      "id": 99,
      "questionText": "Scenario: High-dimensional DBSCAN problem. Solution?",
      "options": [
        "Dimensionality reduction (PCA, t-SNE) or HDBSCAN",
        "Increase minPts arbitrarily",
        "Ignore scaling",
        "Use raw distances"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-dimensional spaces make distances less meaningful; reduction or adaptive methods improve clustering."
    },
    {
      "id": 100,
      "questionText": "Scenario: Choosing minPts in DBSCAN. Rule of thumb?",
      "options": [
        "minPts = 1 always",
        "minPts = dataset size",
        "Ignore minPts",
        "minPts ≥ dimensionality + 1"
      ],
      "correctAnswerIndex": 3,
      "explanation": "minPts should slightly exceed data dimensionality to ensure meaningful clusters."
    }
  ]
}