File size: 48,112 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
{
  "title": "Principal Component Analysis (PCA) Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 multiple-choice questions designed to test and deepen your understanding of Principal Component Analysis (PCA), from basic concepts to advanced applications in dimensionality reduction and feature engineering.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the main goal of Principal Component Analysis (PCA)?",
      "options": [
        "To classify data into categories",
        "To generate random features",
        "To cluster data points",
        "To reduce the dimensionality of a dataset while retaining most variance"
      ],
      "correctAnswerIndex": 3,
      "explanation": "PCA aims to reduce the number of variables in a dataset while preserving as much variability as possible."
    },
    {
      "id": 2,
      "questionText": "In PCA, what does a 'principal component' represent?",
      "options": [
        "The cluster center",
        "An original feature in the dataset",
        "A new uncorrelated feature that captures maximum variance",
        "The mean of all features"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Principal components are linear combinations of original features that are uncorrelated and ordered by the amount of variance they capture."
    },
    {
      "id": 3,
      "questionText": "What is the first step before applying PCA?",
      "options": [
        "Standardize or normalize the data",
        "Train a classifier",
        "Apply k-means clustering",
        "Remove outliers only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Standardization ensures that features with different scales contribute equally to the principal components."
    },
    {
      "id": 4,
      "questionText": "Scenario: You have 10 features, but 90% of the variance is captured in 2 components. What can you do?",
      "options": [
        "Keep all 10 features",
        "Apply dropout",
        "Add more features",
        "Reduce the dataset to 2 principal components"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Reducing to 2 principal components retains most of the information while simplifying the dataset."
    },
    {
      "id": 5,
      "questionText": "Which mathematical technique is commonly used to compute PCA?",
      "options": [
        "Eigen decomposition of the covariance matrix",
        "Linear regression",
        "Gradient descent",
        "k-Nearest Neighbors"
      ],
      "correctAnswerIndex": 0,
      "explanation": "PCA typically involves computing eigenvectors and eigenvalues of the covariance matrix to find principal components."
    },
    {
      "id": 6,
      "questionText": "What property do all principal components have?",
      "options": [
        "They are uncorrelated (orthogonal) to each other",
        "They sum to zero",
        "They are dependent on each other",
        "They always have the same variance"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Principal components are constructed to be orthogonal, ensuring no redundancy in the information they capture."
    },
    {
      "id": 7,
      "questionText": "Scenario: PCA applied on a dataset with features in different scales. What happens if you don’t standardize?",
      "options": [
        "The first component captures zero variance",
        "PCA fails to compute",
        "Features with larger scale dominate the principal components",
        "Variance is automatically normalized"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Without standardization, features with larger numeric ranges contribute more to variance, skewing PCA results."
    },
    {
      "id": 8,
      "questionText": "Which of the following can PCA NOT do?",
      "options": [
        "Remove correlated features",
        "Reduce dimensionality",
        "Improve classification accuracy directly",
        "Visualize high-dimensional data"
      ],
      "correctAnswerIndex": 2,
      "explanation": "PCA is unsupervised and reduces dimensionality; it does not directly improve classification accuracy."
    },
    {
      "id": 9,
      "questionText": "Scenario: You apply PCA and find that the first principal component explains 70% variance, the second 20%, and the rest 10%. How many components would you keep to retain 90% variance?",
      "options": [
        "All components",
        "One component",
        "Two components",
        "Three components"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Adding the first two components (70% + 20%) captures 90% of the dataset variance."
    },
    {
      "id": 10,
      "questionText": "PCA is an example of which type of learning?",
      "options": [
        "Supervised learning",
        "Unsupervised learning",
        "Reinforcement learning",
        "Semi-supervised learning"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PCA does not use labels; it finds patterns based on feature correlations, making it unsupervised."
    },
    {
      "id": 11,
      "questionText": "Scenario: You perform PCA and transform your 5D data to 3D. What property is guaranteed?",
      "options": [
        "Classification accuracy improves",
        "The 3 components capture the maximum possible variance in 3D",
        "All data points remain equidistant",
        "The original features are perfectly preserved"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PCA selects components capturing maximum variance in the reduced dimensions, not necessarily preserving original distances."
    },
    {
      "id": 12,
      "questionText": "Which PCA component explains the least variance?",
      "options": [
        "All components explain equal variance",
        "Any intermediate component",
        "The last principal component",
        "The first principal component"
      ],
      "correctAnswerIndex": 2,
      "explanation": "PCA orders components from highest to lowest variance."
    },
    {
      "id": 13,
      "questionText": "Scenario: Dataset is already perfectly uncorrelated. What effect does PCA have?",
      "options": [
        "PCA fails to compute",
        "Principal components are the same as original features",
        "PCA increases correlation",
        "PCA reduces variance"
      ],
      "correctAnswerIndex": 1,
      "explanation": "If features are uncorrelated, PCA simply aligns components with original features without reducing dimensionality."
    },
    {
      "id": 14,
      "questionText": "Scenario: You want to visualize high-dimensional data in 2D. PCA is applied. What is the risk?",
      "options": [
        "Data labels change",
        "All variance is retained",
        "Some variance is lost",
        "Original features are unchanged"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Reducing dimensions to 2D inevitably loses some information (variance)."
    },
    {
      "id": 15,
      "questionText": "Which of the following matrices is symmetric and used in PCA?",
      "options": [
        "Distance matrix",
        "Covariance matrix",
        "Adjacency matrix",
        "Correlation matrix"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The covariance matrix is symmetric and serves as the basis for eigen decomposition in PCA."
    },
    {
      "id": 16,
      "questionText": "Scenario: You have highly correlated features. PCA is applied. Effect?",
      "options": [
        "Normalizes variance",
        "Reduces redundancy by combining correlated features into fewer components",
        "Removes labels",
        "Increases correlation"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PCA transforms correlated features into uncorrelated principal components, reducing redundancy."
    },
    {
      "id": 17,
      "questionText": "Scenario: You want to reduce noise in data. PCA helps by:",
      "options": [
        "Scaling the first component only",
        "Adding more features",
        "Increasing learning rate",
        "Discarding components with low variance"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Low-variance components often represent noise; removing them denoises the dataset."
    },
    {
      "id": 18,
      "questionText": "Scenario: Eigenvalues of a PCA covariance matrix are [4, 2, 1]. Which component explains the most variance?",
      "options": [
        "Second component",
        "All equally",
        "First component",
        "Third component"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Eigenvalues correspond to the variance captured; the largest eigenvalue indicates the component with most variance."
    },
    {
      "id": 19,
      "questionText": "Scenario: You apply PCA to a dataset and plot explained variance ratio. Purpose?",
      "options": [
        "Scale features",
        "Compute correlation matrix",
        "Determine how many components to keep",
        "Train a classifier"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Explained variance ratio helps decide how many components capture sufficient information."
    },
    {
      "id": 20,
      "questionText": "Which PCA component is always orthogonal to the first component?",
      "options": [
        "It may not be orthogonal",
        "Third component",
        "Second component",
        "Last component only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "By definition, each principal component is orthogonal to all previous components."
    },
    {
      "id": 21,
      "questionText": "Scenario: After PCA, some components have very small variance. Action?",
      "options": [
        "They must be retained",
        "Scale them up",
        "Add noise to them",
        "They can be discarded"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Components with negligible variance contribute little to data representation and can be removed."
    },
    {
      "id": 22,
      "questionText": "Scenario: PCA applied to non-linear data. Limitation?",
      "options": [
        "PCA generates labels",
        "PCA cannot capture non-linear relationships",
        "PCA increases variance",
        "PCA overfits"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Standard PCA is linear and cannot model complex non-linear structures; kernel PCA may be used instead."
    },
    {
      "id": 23,
      "questionText": "Scenario: PCA reduces features from 5D to 2D. Data reconstruction is approximate. Why?",
      "options": [
        "Labels change",
        "Information is lost in discarded components",
        "PCA adds noise",
        "Variance is increased"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Dimensionality reduction retains only top components, losing some original information."
    },
    {
      "id": 24,
      "questionText": "Which metric is used to measure how much variance is captured by selected components?",
      "options": [
        "Mean squared error",
        "Correlation coefficient",
        "Explained variance ratio",
        "Euclidean distance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Explained variance ratio shows the proportion of total variance captured by each principal component."
    },
    {
      "id": 25,
      "questionText": "Scenario: PCA on standardized data vs. unstandardized data. Difference?",
      "options": [
        "Standardization reduces variance",
        "Standardized data gives equal weight to all features",
        "Unstandardized data improves variance capture",
        "No difference"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Standardization prevents features with large scales from dominating the PCA components."
    },
    {
      "id": 26,
      "questionText": "Scenario: Two features are perfectly correlated. PCA effect?",
      "options": [
        "Cannot perform PCA",
        "One component captures the shared variance",
        "Both components are kept equally",
        "Variance becomes zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PCA combines correlated features into a single principal component."
    },
    {
      "id": 27,
      "questionText": "Scenario: You want to visualize 3D data in 2D. PCA helps by:",
      "options": [
        "Adding more dimensions",
        "Projecting onto top 2 principal components",
        "Scaling features only",
        "Generating new labels"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Projection onto top principal components preserves as much variance as possible in reduced dimensions."
    },
    {
      "id": 28,
      "questionText": "Scenario: After PCA, you notice negative values in transformed features. Meaning?",
      "options": [
        "PCA failed",
        "Original data must be negative",
        "Data must be scaled again",
        "Principal components can have negative and positive values"
      ],
      "correctAnswerIndex": 3,
      "explanation": "PCA components are linear combinations of original features, allowing both negative and positive values."
    },
    {
      "id": 29,
      "questionText": "Scenario: You apply PCA for feature selection. Best approach?",
      "options": [
        "Discard largest components",
        "Select random components",
        "Keep all features",
        "Select top components explaining desired variance"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Top principal components capture most variance and are most informative for feature selection."
    },
    {
      "id": 30,
      "questionText": "Scenario: PCA is applied to a dataset with 100 features. First 10 components explain 95% variance. Next step?",
      "options": [
        "Use all 100 features",
        "Discard the 10 components",
        "Add more features",
        "Use 10 components for reduced dataset"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Using the first 10 components retains 95% of information while reducing dimensionality significantly."
    },
    {
      "id": 31,
      "questionText": "Scenario: You apply PCA but some features dominate due to large variance. Solution?",
      "options": [
        "Standardize the features",
        "Remove features with high variance",
        "Apply k-means clustering",
        "Reduce dataset size"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Standardizing ensures all features contribute equally, preventing dominance of large-scale features."
    },
    {
      "id": 32,
      "questionText": "Scenario: PCA eigenvalues are [5, 2, 0.5, 0.1]. What does the smallest eigenvalue indicate?",
      "options": [
        "Largest variance",
        "Component is most important",
        "Least variance along that component",
        "PCA failed"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Eigenvalues represent variance along principal components; the smallest captures minimal variance."
    },
    {
      "id": 33,
      "questionText": "Scenario: Two components have similar eigenvalues. What to do?",
      "options": [
        "Discard one randomly",
        "Keep both as they explain similar variance",
        "Combine them manually",
        "Always choose the first"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Similar eigenvalues indicate both components carry significant information; both should be retained."
    },
    {
      "id": 34,
      "questionText": "Scenario: You want to analyze which original features contribute to a principal component. Technique?",
      "options": [
        "Check explained variance ratio only",
        "Remove low variance features",
        "Examine component loadings (eigenvectors)",
        "Normalize the dataset"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Loadings show the weight of each original feature in a principal component, indicating contribution."
    },
    {
      "id": 35,
      "questionText": "Scenario: PCA applied on correlation matrix vs covariance matrix. Difference?",
      "options": [
        "Correlation matrix standardizes features; covariance matrix uses original scale",
        "No difference",
        "Covariance matrix reduces variance",
        "Correlation matrix increases variance"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Correlation matrix accounts for differing scales by standardizing variables before computing PCA."
    },
    {
      "id": 36,
      "questionText": "Scenario: PCA is applied to noisy data. Effect of noise?",
      "options": [
        "Noise appears in low-variance components",
        "Noise improves variance",
        "Noise is amplified in all components",
        "Noise disappears automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-frequency noise often contributes little variance and is captured in later components, which can be discarded."
    },
    {
      "id": 37,
      "questionText": "Scenario: You want to visualize 4D data in 2D using PCA. Which components to use?",
      "options": [
        "Last 2 components",
        "All 4 components",
        "Top 2 principal components",
        "Random 2 features"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Top components retain most variance, providing the best 2D representation of high-dimensional data."
    },
    {
      "id": 38,
      "questionText": "Scenario: PCA applied on dataset with zero mean. Why mean-centering?",
      "options": [
        "Normalizes labels",
        "Increases variance artificially",
        "Reduces number of features",
        "Ensures first component captures maximum variance from origin"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Mean-centering removes bias and ensures principal components represent variance relative to the mean."
    },
    {
      "id": 39,
      "questionText": "Scenario: PCA applied but first component explains only 20% variance. Interpretation?",
      "options": [
        "First component is irrelevant",
        "Data variance is spread across many components",
        "Reduce dataset size",
        "PCA failed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Low variance in first component indicates no single direction dominates; variance is more uniform across features."
    },
    {
      "id": 40,
      "questionText": "Scenario: You perform PCA on features measured in different units. Why important?",
      "options": [
        "To generate labels",
        "To increase explained variance",
        "To remove features",
        "To prevent unit differences from skewing components"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Standardization equalizes units, ensuring PCA reflects intrinsic data structure rather than measurement scale."
    },
    {
      "id": 41,
      "questionText": "Scenario: Projecting data back from reduced PCA components to original space. Effect?",
      "options": [
        "Perfect reconstruction always",
        "Approximate reconstruction with some information loss",
        "Increase variance",
        "Remove correlations"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Dimensionality reduction discards minor components, so reconstruction is approximate."
    },
    {
      "id": 42,
      "questionText": "Scenario: PCA on sparse high-dimensional data. Which method can help?",
      "options": [
        "Sparse PCA",
        "Random projection",
        "Feature scaling",
        "Standard PCA only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Sparse PCA introduces sparsity constraints to handle high-dimensional data efficiently."
    },
    {
      "id": 43,
      "questionText": "Scenario: Kernel PCA vs standard PCA. Advantage?",
      "options": [
        "Kernel PCA reduces variance",
        "Kernel PCA does not reduce dimensions",
        "Kernel PCA captures non-linear patterns",
        "Standard PCA is better for non-linear data"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Kernel PCA uses kernel functions to capture non-linear relationships, unlike linear PCA."
    },
    {
      "id": 44,
      "questionText": "Scenario: PCA applied to dataset, but covariance matrix is singular. Cause?",
      "options": [
        "Data standardized",
        "Number of features > number of samples",
        "Explained variance too high",
        "Too few features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A singular covariance matrix occurs when the data matrix has more features than samples, causing linear dependency."
    },
    {
      "id": 45,
      "questionText": "Scenario: After PCA, a component has zero eigenvalue. Meaning?",
      "options": [
        "Data is invalid",
        "No variance along this component",
        "PCA failed",
        "Most important component"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Zero eigenvalue indicates the component captures no variation in the dataset."
    },
    {
      "id": 46,
      "questionText": "Scenario: PCA used for feature reduction in regression. Benefit?",
      "options": [
        "Removes labels",
        "Increases overfitting",
        "Generates noise",
        "Reduces multicollinearity and model complexity"
      ],
      "correctAnswerIndex": 3,
      "explanation": "PCA produces uncorrelated features, mitigating multicollinearity and simplifying models."
    },
    {
      "id": 47,
      "questionText": "Scenario: PCA shows first 3 components explain 85% variance. Choice?",
      "options": [
        "Keep 3 components for reduced dataset",
        "Keep only first",
        "Discard all 3",
        "Keep all original features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Top components capturing majority variance are sufficient for dimensionality reduction."
    },
    {
      "id": 48,
      "questionText": "Scenario: PCA reduces dataset but downstream classifier performs worse. Likely reason?",
      "options": [
        "Important variance discarded in low components",
        "Features were not standardized",
        "Too few principal components retained",
        "All of the above"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Poor classifier performance can result from lost variance, insufficient components, or unstandardized features."
    },
    {
      "id": 49,
      "questionText": "Scenario: PCA on image dataset. First component represents lighting changes. Meaning?",
      "options": [
        "Reduce dataset size",
        "Lighting has no effect",
        "Largest variance is due to lighting, not object content",
        "PCA failed"
      ],
      "correctAnswerIndex": 2,
      "explanation": "PCA captures directions of maximal variance; if lighting dominates, first component encodes lighting."
    },
    {
      "id": 50,
      "questionText": "Scenario: You need interpretability for principal components. Technique?",
      "options": [
        "Examine feature loadings",
        "Discard low variance components",
        "Use explained variance only",
        "Standardize data"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Loadings show contribution of each original feature to principal components, aiding interpretation."
    },
    {
      "id": 51,
      "questionText": "Scenario: PCA applied on time-series features. Issue?",
      "options": [
        "Eigenvalues become negative",
        "Labels are affected",
        "Variance is increased",
        "Temporal structure may be lost"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Standard PCA ignores sequence information; temporal relationships may not be preserved."
    },
    {
      "id": 52,
      "questionText": "Scenario: Dataset contains categorical variables. PCA requirement?",
      "options": [
        "Convert to numerical via encoding",
        "Remove them",
        "No change required",
        "Use labels directly"
      ],
      "correctAnswerIndex": 0,
      "explanation": "PCA requires numeric input; categorical features must be encoded first (e.g., one-hot encoding)."
    },
    {
      "id": 53,
      "questionText": "Scenario: PCA reduces dimensions for clustering. Benefit?",
      "options": [
        "Increases data size",
        "Reduces noise and speeds computation",
        "Removes clusters",
        "Generates labels"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PCA simplifies data, removes redundant features, and accelerates clustering algorithms."
    },
    {
      "id": 54,
      "questionText": "Scenario: After PCA, components are used in regression. Advantage?",
      "options": [
        "Remove labels",
        "Avoid multicollinearity and improve stability",
        "Increases overfitting",
        "Increase computation"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Principal components are uncorrelated, reducing multicollinearity in regression."
    },
    {
      "id": 55,
      "questionText": "Scenario: PCA applied to normalized vs standardized features. Impact?",
      "options": [
        "No impact",
        "Normalized features fail PCA",
        "Standardization is crucial for unequal scales",
        "Variance is reduced"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Features with different scales must be standardized; normalization alone may not equalize contribution."
    },
    {
      "id": 56,
      "questionText": "Scenario: First principal component explains 40% variance, second 25%. What % variance is left?",
      "options": [
        "40%",
        "35%",
        "25%",
        "65%"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Remaining variance = 100% - (40% + 25%) = 35%."
    },
    {
      "id": 57,
      "questionText": "Scenario: PCA used on finance dataset. First component dominated by one stock. Meaning?",
      "options": [
        "Data should be reduced",
        "This stock has highest variance in data",
        "Stock is irrelevant",
        "PCA failed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Principal components capture directions of maximum variance; one high-variance stock can dominate."
    },
    {
      "id": 58,
      "questionText": "Scenario: PCA applied on small dataset. Risk?",
      "options": [
        "PCA fails",
        "Components become identical",
        "Overfitting and noisy components",
        "Variance increases"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Small datasets may produce unstable covariance estimates, leading to noisy components."
    },
    {
      "id": 59,
      "questionText": "Scenario: You want to project new data using previously fitted PCA. Method?",
      "options": [
        "Cannot project new data",
        "Recompute PCA",
        "Multiply new data by learned component matrix",
        "Use labels only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "New data can be projected by applying the PCA transformation learned from training data."
    },
    {
      "id": 60,
      "questionText": "Scenario: PCA shows negative loadings. Meaning?",
      "options": [
        "Error in computation",
        "Variance is negative",
        "Feature removed",
        "Feature negatively correlates with component"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Negative loadings indicate the original feature moves in opposite direction to the component."
    },
    {
      "id": 61,
      "questionText": "Scenario: PCA applied to very high-dimensional genomic data. Challenge?",
      "options": [
        "Variance is too high",
        "Cannot compute eigenvectors",
        "Labels cannot be used",
        "Covariance matrix may be singular or noisy"
      ],
      "correctAnswerIndex": 3,
      "explanation": "High dimensionality with few samples can make the covariance matrix singular and PCA unstable."
    },
    {
      "id": 62,
      "questionText": "Scenario: PCA on dataset with outliers. Effect?",
      "options": [
        "PCA removes outliers",
        "Outliers may distort principal components",
        "Outliers are ignored automatically",
        "Variance increases uniformly"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Outliers can dominate variance, affecting directions of principal components."
    },
    {
      "id": 63,
      "questionText": "Scenario: PCA applied for compression. Target explained variance?",
      "options": [
        "Keep all components",
        "Keep only first component",
        "Choose enough components to capture 90–95% variance",
        "Discard top components"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Selecting components that retain most variance ensures compression without losing significant information."
    },
    {
      "id": 64,
      "questionText": "Scenario: PCA reduces dataset but downstream classifier performs worse. Likely reason?",
      "options": [
        "PCA cannot be applied to numeric data",
        "Too few principal components retained",
        "All of the above",
        "Features were not standardized",
        "Important variance discarded in low components"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Poor classifier performance can result from lost variance, insufficient components, or unstandardized features."
    },
    {
      "id": 65,
      "questionText": "Scenario: PCA used for exploratory analysis. Benefit?",
      "options": [
        "Removes labels",
        "Increases dimensionality",
        "Generates random features",
        "Reveals patterns, clusters, and correlations"
      ],
      "correctAnswerIndex": 3,
      "explanation": "PCA simplifies data and highlights underlying patterns or groupings."
    },
    {
      "id": 66,
      "questionText": "Scenario: PCA reduces dataset from 50 to 10 features. Effect on storage?",
      "options": [
        "Significant reduction in storage and computation",
        "Increases storage",
        "No change",
        "Removes labels"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Fewer features reduce memory usage and accelerate computations."
    },
    {
      "id": 67,
      "questionText": "Scenario: PCA used on correlation matrix. Advantage?",
      "options": [
        "Reduces variance",
        "Generates labels",
        "Equalizes feature scales and emphasizes relative relationships",
        "Removes low-variance features only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Correlation matrix ensures features with different units or scales contribute proportionally to PCA."
    },
    {
      "id": 68,
      "questionText": "Scenario: After PCA, some features have nearly zero loadings across components. Meaning?",
      "options": [
        "Variance is too high",
        "These features contribute little variance and can be discarded",
        "They are most important",
        "PCA failed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Features with negligible loadings do not influence principal components significantly."
    },
    {
      "id": 69,
      "questionText": "Scenario: PCA applied to dataset with correlated noise. Effect?",
      "options": [
        "All variance captured by noise",
        "Noise may form separate low-variance components",
        "PCA fails",
        "Noise dominates first component"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Correlated noise often appears in later components with low variance."
    },
    {
      "id": 70,
      "questionText": "Scenario: You want to reduce dimensionality without losing much information. PCA strategy?",
      "options": [
        "Use all components",
        "Keep enough components to capture desired variance (e.g., 90–95%)",
        "Keep only first component",
        "Discard components randomly"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Selecting enough principal components ensures dimensionality reduction while retaining most data information."
    },
    {
      "id": 71,
      "questionText": "Scenario: Kernel PCA is used instead of standard PCA. Benefit?",
      "options": [
        "Reduces dimensionality linearly",
        "Captures non-linear relationships in the data",
        "Removes outliers automatically",
        "Generates labels"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Kernel PCA uses kernel functions to map data into higher-dimensional space to capture non-linear patterns."
    },
    {
      "id": 72,
      "questionText": "Scenario: Sparse PCA is applied on high-dimensional genomic data. Advantage?",
      "options": [
        "Improves label prediction automatically",
        "Maximizes variance only",
        "Generates components with few non-zero loadings for interpretability",
        "Removes all correlations"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sparse PCA introduces sparsity constraints, creating components influenced by fewer original features for easier interpretation."
    },
    {
      "id": 73,
      "questionText": "Scenario: PCA is applied to compress image data. How to measure quality of compression?",
      "options": [
        "Variance ratio only",
        "Correlation of first component with pixels",
        "Reconstruction error (difference between original and reconstructed images)",
        "Number of components kept"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Reconstruction error quantifies information loss during dimensionality reduction, evaluating compression quality."
    },
    {
      "id": 74,
      "questionText": "Scenario: PCA applied to multicollinear financial features. Effect?",
      "options": [
        "Increases collinearity",
        "Reduces multicollinearity by generating uncorrelated components",
        "Removes variance",
        "Generates labels"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Principal components are orthogonal, addressing multicollinearity issues in regression or predictive models."
    },
    {
      "id": 75,
      "questionText": "Scenario: PCA applied on large sparse document-term matrix. Challenge?",
      "options": [
        "PCA cannot be applied",
        "High dimensionality and sparsity require optimized algorithms",
        "All features dominate equally",
        "Variance becomes negative"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Sparse high-dimensional data may need techniques like randomized PCA to efficiently compute components."
    },
    {
      "id": 76,
      "questionText": "Scenario: PCA applied to time-series data. Concern?",
      "options": [
        "Labels are changed",
        "Temporal correlations may be ignored",
        "PCA reduces samples",
        "Variance increases"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PCA does not account for order in sequences; temporal patterns may be lost."
    },
    {
      "id": 77,
      "questionText": "Scenario: PCA reduces 100 features to 5 components. Downstream model performance drops. Likely cause?",
      "options": [
        "All of the above",
        "Data not standardized",
        "Too few samples",
        "Important low-variance features were discarded"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Discarding low-variance features may remove predictive information; other preprocessing issues can also affect performance."
    },
    {
      "id": 78,
      "questionText": "Scenario: PCA is used for anomaly detection. Approach?",
      "options": [
        "Discard all components",
        "Use first component only",
        "Model normal data with top components and examine reconstruction error",
        "Apply PCA on labels"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Anomalies often lie in directions of low variance; reconstruction error from PCA can identify unusual data points."
    },
    {
      "id": 79,
      "questionText": "Scenario: You apply PCA on a dataset with missing values. Best approach?",
      "options": [
        "PCA fills missing values automatically",
        "Ignore missing values",
        "Impute missing values before PCA",
        "Discard rows with missing values"
      ],
      "correctAnswerIndex": 2,
      "explanation": "PCA requires complete numerical data; missing values must be imputed or handled before applying PCA."
    },
    {
      "id": 80,
      "questionText": "Scenario: PCA applied and first component aligns with single feature. Interpretation?",
      "options": [
        "This feature dominates variance in the dataset",
        "Component is irrelevant",
        "All features are equally important",
        "PCA failed"
      ],
      "correctAnswerIndex": 0,
      "explanation": "When a single feature dominates variance, the first principal component aligns closely with that feature."
    },
    {
      "id": 81,
      "questionText": "Scenario: You perform PCA and observe negative explained variance ratio for a component. Reason?",
      "options": [
        "Data was not mean-centered properly",
        "Eigenvectors are invalid",
        "Variance is negative",
        "PCA cannot run on this data"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Improper centering can lead to incorrect covariance matrix, causing negative variance calculations."
    },
    {
      "id": 82,
      "questionText": "Scenario: PCA applied on data with categorical features encoded as one-hot. Concern?",
      "options": [
        "Variance decreases automatically",
        "Labels are affected",
        "Components become identical",
        "High dimensionality may lead to sparse components"
      ],
      "correctAnswerIndex": 3,
      "explanation": "One-hot encoding increases dimensions, producing sparse data; special handling or sparse PCA may be useful."
    },
    {
      "id": 83,
      "questionText": "Scenario: After PCA, you plot a biplot. Purpose?",
      "options": [
        "Scale data",
        "Generate labels",
        "Visualize principal components and feature contributions",
        "Remove low-variance components"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Biplots show both projected data points and how original features contribute to components."
    },
    {
      "id": 84,
      "questionText": "Scenario: PCA applied on standardized vs non-standardized data with different scales. Outcome?",
      "options": [
        "Standardization ensures fair contribution; non-standardized may bias components",
        "Non-standardized data improves variance",
        "No difference",
        "Variance is reduced in standardized data"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Features with large scales dominate components without standardization, skewing PCA results."
    },
    {
      "id": 85,
      "questionText": "Scenario: You want interpretable PCA components. Which approach?",
      "options": [
        "Keep all components",
        "Sparse PCA or rotation methods like varimax",
        "Use first component only",
        "Discard low-variance features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Sparse PCA and rotation techniques improve interpretability by reducing the number of features contributing to each component."
    },
    {
      "id": 86,
      "questionText": "Scenario: PCA reduces dimensions for clustering. Benefit?",
      "options": [
        "Removes noise, reduces computation, highlights clusters",
        "Increases dimensionality",
        "Generates labels",
        "Removes clusters"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reduced, de-noised features simplify clustering and often improve performance."
    },
    {
      "id": 87,
      "questionText": "Scenario: PCA eigenvectors are not unique. Reason?",
      "options": [
        "PCA failed",
        "Covariance matrix invalid",
        "Eigenvectors are unique up to sign; direction can flip",
        "Variance negative"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Eigenvectors can be multiplied by -1 without changing the subspace, so they are not unique in sign."
    },
    {
      "id": 88,
      "questionText": "Scenario: PCA applied to data where noise dominates variance. Risk?",
      "options": [
        "Components may represent noise rather than signal",
        "Variance reduces",
        "All information preserved",
        "Components become identical"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-variance noise can dominate principal components, reducing meaningful representation of data."
    },
    {
      "id": 89,
      "questionText": "Scenario: PCA applied on dataset with many features having zero variance. Effect?",
      "options": [
        "These features are ignored in covariance computation",
        "PCA fails",
        "Variance increases",
        "Components become identical"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Zero-variance features do not contribute to covariance and do not affect PCA results."
    },
    {
      "id": 90,
      "questionText": "Scenario: PCA applied to compress hyperspectral image. Key consideration?",
      "options": [
        "Retain components capturing most spectral variance for accurate reconstruction",
        "Discard high-variance components",
        "Keep only first component",
        "Generate labels automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Hyperspectral data has many correlated channels; top components capture essential information while reducing data size."
    },
    {
      "id": 91,
      "questionText": "Scenario: PCA applied and first component is dominated by outlier. Solution?",
      "options": [
        "Keep data as-is",
        "Remove or mitigate outliers before PCA",
        "Scale only first feature",
        "Discard PCA entirely"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Outliers can skew variance and principal directions; handling them ensures meaningful PCA components."
    },
    {
      "id": 92,
      "questionText": "Scenario: You need to project streaming data onto PCA components. Requirement?",
      "options": [
        "Project only first sample",
        "Cannot apply PCA",
        "Recompute PCA each time",
        "Use incremental PCA or precomputed components"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Incremental PCA allows efficient projection of new data without recomputing from scratch."
    },
    {
      "id": 93,
      "questionText": "Scenario: PCA reduces dimensionality but variance explained is too low. Solution?",
      "options": [
        "Remove first component",
        "Normalize data again",
        "Keep more components",
        "Discard components"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Increasing number of components ensures more variance is retained for downstream tasks."
    },
    {
      "id": 94,
      "questionText": "Scenario: PCA applied on correlated features with different scales. Effect if not standardized?",
      "options": [
        "Variance is evenly distributed",
        "Components are orthogonal",
        "PCA fails",
        "Large-scale features dominate components"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Without standardization, features with larger numeric ranges contribute more variance, skewing PCA results."
    },
    {
      "id": 95,
      "questionText": "Scenario: PCA used for dimensionality reduction prior to deep learning. Benefit?",
      "options": [
        "Generates labels",
        "Increases overfitting",
        "Reduces input size and noise, improving training efficiency",
        "Removes all variance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "PCA simplifies input features, removing redundant information and reducing computational load."
    },
    {
      "id": 96,
      "questionText": "Scenario: PCA applied but some components are highly correlated. Why unusual?",
      "options": [
        "Principal components should be orthogonal; correlation indicates an issue",
        "Variance is low",
        "Labels are influencing components",
        "Expected in standard PCA"
      ],
      "correctAnswerIndex": 0,
      "explanation": "PCA produces orthogonal components; correlated components suggest computation or preprocessing errors."
    },
    {
      "id": 97,
      "questionText": "Scenario: PCA applied on multi-class dataset for visualization. Approach?",
      "options": [
        "Discard labels",
        "Keep all features",
        "Project onto top 2 or 3 components and color points by class",
        "Use only first component"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Low-dimensional projection allows visualization of class separation while preserving maximal variance."
    },
    {
      "id": 98,
      "questionText": "Scenario: PCA applied with top components explaining 80% variance. Downstream task requires 95%. Action?",
      "options": [
        "Normalize data again",
        "Use only top components",
        "Include additional components until 95% variance is captured",
        "Discard low components"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Selecting enough components ensures sufficient information is retained for downstream analysis."
    },
    {
      "id": 99,
      "questionText": "Scenario: PCA applied to text embeddings. Challenge?",
      "options": [
        "High dimensionality and sparsity require careful computation",
        "Variance is negative",
        "PCA fails automatically",
        "Components lose meaning entirely"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Text embeddings are often high-dimensional; PCA helps reduce size but may require optimized algorithms."
    },
    {
      "id": 100,
      "questionText": "Scenario: PCA used for feature selection. How to choose components?",
      "options": [
        "Choose random components",
        "Discard high-variance components",
        "Use only first component",
        "Select components explaining desired variance threshold (e.g., 90–95%)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Selecting top components ensures maximal retained information while reducing dimensionality."
    }
  ]
}