File size: 43,634 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
{
  "title": "Polynomial Regression Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 multiple-choice questions designed to teach and test your understanding of Polynomial Regression, starting from basic Linear Regression concepts to advanced ideas like model evaluation, bias-variance tradeoff, and overfitting.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the main goal of Linear Regression?",
      "options": [
        "To find clusters in data",
        "To compress the data",
        "To find a straight-line relationship between variables",
        "To predict categories"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Linear Regression tries to find the best straight line that shows the relationship between input and output variables."
    },
    {
      "id": 2,
      "questionText": "In Linear Regression, what kind of relationship is modeled between X and Y?",
      "options": [
        "Polynomial",
        "Linear",
        "Circular",
        "Exponential"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Linear Regression assumes a straight-line (linear) relationship between the independent and dependent variables."
    },
    {
      "id": 3,
      "questionText": "What does the slope in Linear Regression represent?",
      "options": [
        "The change in Y for a one-unit change in X",
        "The error of the model",
        "The average of all Y values",
        "The value of Y when X is 0"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The slope tells us how much Y changes when X increases by 1 unit."
    },
    {
      "id": 4,
      "questionText": "What is the intercept in a Linear Regression equation?",
      "options": [
        "The number of data points",
        "The steepness of the line",
        "The point where the line crosses the Y-axis",
        "The residual value"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The intercept is the Y value when X equals 0. It’s where the line meets the Y-axis."
    },
    {
      "id": 5,
      "questionText": "What does a residual represent in regression?",
      "options": [
        "The slope of the line",
        "The average of predictions",
        "Difference between actual and predicted values",
        "The standard deviation"
      ],
      "correctAnswerIndex": 2,
      "explanation": "A residual is the difference between the actual value and the predicted value. It shows how far the model’s prediction is from reality."
    },
    {
      "id": 6,
      "questionText": "What method is commonly used to fit a Linear Regression line?",
      "options": [
        "Gradient Ascent",
        "Residual Addition",
        "Ordinary Least Squares",
        "Mean Minimization"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Ordinary Least Squares (OLS) minimizes the sum of squared residuals to find the best-fitting line."
    },
    {
      "id": 7,
      "questionText": "What happens if residuals are not randomly distributed?",
      "options": [
        "There may be a pattern not captured by the model",
        "It increases accuracy",
        "The slope becomes 0",
        "The model is perfect"
      ],
      "correctAnswerIndex": 0,
      "explanation": "If residuals show a pattern, it means the model missed some relationship in the data."
    },
    {
      "id": 8,
      "questionText": "What type of variable does Linear Regression predict?",
      "options": [
        "Continuous",
        "Integer only",
        "Categorical",
        "Binary"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Linear Regression is used for predicting continuous numerical values like height, weight, or prices."
    },
    {
      "id": 9,
      "questionText": "Which assumption is true for Linear Regression?",
      "options": [
        "All features are independent",
        "Residuals are normally distributed",
        "Data must be categorical",
        "Output is binary"
      ],
      "correctAnswerIndex": 1,
      "explanation": "One assumption of Linear Regression is that residuals should follow a normal distribution."
    },
    {
      "id": 10,
      "questionText": "What problem occurs when data is not linear?",
      "options": [
        "Lower variance",
        "Perfect prediction",
        "Poor model fit",
        "Balanced output"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Linear Regression works best for linear data. If data is curved, it won’t fit well, leading to high error."
    },
    {
      "id": 11,
      "questionText": "What is Polynomial Regression used for?",
      "options": [
        "Modeling curved relationships",
        "Modeling straight-line relationships",
        "Finding clusters",
        "Reducing dimensionality"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Polynomial Regression models non-linear or curved relationships between input and output variables."
    },
    {
      "id": 12,
      "questionText": "Polynomial Regression is an extension of which model?",
      "options": [
        "Decision Tree",
        "Linear Regression",
        "Logistic Regression",
        "Naive Bayes"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Polynomial Regression is an extension of Linear Regression where input features are raised to powers."
    },
    {
      "id": 13,
      "questionText": "In Polynomial Regression, we add what kind of terms to the model?",
      "options": [
        "Cubic roots only",
        "Squared and higher power terms of input",
        "Logarithmic terms",
        "Exponential terms"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Polynomial Regression includes higher power terms like x², x³, etc., to capture curves in the data."
    },
    {
      "id": 14,
      "questionText": "What shape can a second-degree Polynomial Regression model represent?",
      "options": [
        "Circle",
        "Parabola",
        "Zigzag",
        "Straight line"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A second-degree polynomial creates a parabola-shaped curve, allowing the model to fit U-shaped data."
    },
    {
      "id": 15,
      "questionText": "What is the general form of a Polynomial Regression equation with one variable?",
      "options": [
        "y = b0 + b1x + b2x² + ... + bkx^k",
        "y = mx + b",
        "y = b0 + b1x",
        "y = bx + c"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Polynomial Regression includes terms of increasing power: x, x², x³, etc., up to the desired degree k."
    },
    {
      "id": 16,
      "questionText": "What happens when you increase the degree of a polynomial too much?",
      "options": [
        "The model becomes linear",
        "The model may overfit the data",
        "The model becomes simpler",
        "The error increases on training data"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A high-degree polynomial can overfit by fitting noise in the training data rather than the true pattern."
    },
    {
      "id": 17,
      "questionText": "Overfitting in Polynomial Regression leads to what?",
      "options": [
        "Lower variance",
        "Simpler equations",
        "Better generalization",
        "Poor performance on new data"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Overfitting means the model performs well on training data but fails to generalize to unseen data."
    },
    {
      "id": 18,
      "questionText": "What is underfitting?",
      "options": [
        "When the model is too simple to capture patterns",
        "When training accuracy is 100%",
        "When residuals are 0",
        "When the model is too complex"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Underfitting happens when the model is too simple and cannot capture the underlying structure of the data."
    },
    {
      "id": 19,
      "questionText": "Which term describes the trade-off between bias and variance in a polynomial model?",
      "options": [
        "Regularization",
        "Feature Scaling",
        "Gradient Descent",
        "Bias-Variance Tradeoff"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Bias-Variance Tradeoff explains how increasing model complexity reduces bias but increases variance."
    },
    {
      "id": 20,
      "questionText": "What is the degree of a polynomial?",
      "options": [
        "Number of variables",
        "Highest power of the input variable",
        "Sum of all coefficients",
        "Number of residuals"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The degree of a polynomial is the highest exponent of the input variable in the equation."
    },
    {
      "id": 21,
      "questionText": "Which type of relationship can Polynomial Regression handle that Linear Regression cannot?",
      "options": [
        "Categorical",
        "Binary",
        "Constant",
        "Non-linear"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Polynomial Regression can model curved, non-linear relationships, unlike simple linear regression."
    },
    {
      "id": 22,
      "questionText": "What does increasing the polynomial degree do?",
      "options": [
        "Simplifies computation",
        "Decreases coefficients",
        "Removes noise",
        "Adds more curve flexibility"
      ],
      "correctAnswerIndex": 3,
      "explanation": "A higher degree polynomial gives the model more flexibility to follow the data's shape."
    },
    {
      "id": 23,
      "questionText": "What kind of curve does a third-degree polynomial create?",
      "options": [
        "Straight line",
        "S-shape",
        "U-shape",
        "Flat line"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A cubic polynomial (degree 3) can create an S-shaped curve that changes direction once."
    },
    {
      "id": 24,
      "questionText": "Which library in Python is commonly used to create polynomial features?",
      "options": [
        "NumPy",
        "scikit-learn",
        "Pandas",
        "Matplotlib"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The PolynomialFeatures class from scikit-learn is used to generate higher-degree input features."
    },
    {
      "id": 25,
      "questionText": "What function in scikit-learn is used to transform data into polynomial features?",
      "options": [
        "create_poly_data()",
        "PolynomialFeatures()",
        "poly_transform()",
        "make_polynomial()"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The PolynomialFeatures() function expands input features into polynomial combinations."
    },
    {
      "id": 26,
      "questionText": "Which of the following problems is Polynomial Regression best suited for?",
      "options": [
        "Linear relationships only",
        "Categorical output prediction",
        "Curved relationships between variables",
        "Time series forecasting only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Polynomial Regression is best used when data shows a curved or non-linear pattern between input and output."
    },
    {
      "id": 27,
      "questionText": "If the degree of the polynomial is 1, what does Polynomial Regression become?",
      "options": [
        "Logistic Regression",
        "Linear Regression",
        "Decision Tree",
        "Ridge Regression"
      ],
      "correctAnswerIndex": 1,
      "explanation": "When the degree is 1, Polynomial Regression is the same as simple Linear Regression."
    },
    {
      "id": 28,
      "questionText": "What happens when you use a degree that is too low for Polynomial Regression?",
      "options": [
        "No bias",
        "Underfitting",
        "Perfect fit",
        "Overfitting"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Using a degree that is too low may cause the model to miss patterns, leading to underfitting."
    },
    {
      "id": 29,
      "questionText": "What kind of error increases with a high-degree polynomial?",
      "options": [
        "Noise",
        "Correlation",
        "Bias",
        "Variance"
      ],
      "correctAnswerIndex": 3,
      "explanation": "High-degree polynomials often increase variance, meaning the model becomes sensitive to small data changes."
    },
    {
      "id": 30,
      "questionText": "What is the main goal when choosing the degree of a polynomial?",
      "options": [
        "To balance bias and variance",
        "To reduce coefficients",
        "To fit as many points as possible",
        "To maximize error"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The degree should be chosen to balance bias (simplicity) and variance (complexity) for good generalization."
    },
    {
      "id": 31,
      "questionText": "What technique can help prevent overfitting in Polynomial Regression?",
      "options": [
        "Adding more features",
        "Increasing polynomial degree",
        "Removing training data",
        "Regularization"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Regularization methods like Ridge or Lasso Regression can reduce overfitting by penalizing large coefficients."
    },
    {
      "id": 32,
      "questionText": "What is Ridge Regression also known as?",
      "options": [
        "Variance Reduction",
        "L2 Regularization",
        "Elastic Net",
        "L1 Regularization"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge Regression uses L2 Regularization, which penalizes the sum of squared coefficients."
    },
    {
      "id": 33,
      "questionText": "What is Lasso Regression also known as?",
      "options": [
        "L1 Regularization",
        "Bias Correction",
        "L2 Regularization",
        "Polynomial Fitting"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Lasso Regression uses L1 Regularization, which penalizes the absolute values of coefficients."
    },
    {
      "id": 34,
      "questionText": "What is the main difference between Ridge and Lasso?",
      "options": [
        "Ridge can remove features, Lasso cannot",
        "Ridge uses L1, Lasso uses L2",
        "Both remove coefficients equally",
        "Lasso can make some coefficients zero, Ridge cannot"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Lasso can shrink some coefficients to exactly zero, performing feature selection, while Ridge cannot."
    },
    {
      "id": 35,
      "questionText": "What evaluation metric measures how well the model explains the variance of the data?",
      "options": [
        "Mean Absolute Error",
        "Mean Squared Error",
        "R-squared",
        "Root Mean Square Deviation"
      ],
      "correctAnswerIndex": 2,
      "explanation": "R-squared measures the proportion of variance in the target variable explained by the model."
    },
    {
      "id": 36,
      "questionText": "What is the range of R-squared values?",
      "options": [
        "0 to 1",
        "1 to infinity",
        "0 to 100",
        "-1 to 1"
      ],
      "correctAnswerIndex": 0,
      "explanation": "R-squared ranges from 0 to 1, where 1 means perfect prediction and 0 means no predictive power."
    },
    {
      "id": 37,
      "questionText": "Which error metric squares the difference between actual and predicted values?",
      "options": [
        "Correlation Coefficient",
        "R-squared",
        "Mean Absolute Error",
        "Mean Squared Error"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Mean Squared Error (MSE) calculates the average of squared prediction errors."
    },
    {
      "id": 38,
      "questionText": "Why is Root Mean Squared Error (RMSE) preferred over MSE?",
      "options": [
        "It gives larger values",
        "It reduces overfitting",
        "It is in the same units as the target variable",
        "It lowers variance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "RMSE is the square root of MSE, giving error values in the same unit as the dependent variable."
    },
    {
      "id": 39,
      "questionText": "What can be a sign of overfitting when comparing training and test errors?",
      "options": [
        "Training error is low but test error is high",
        "Both errors are low",
        "Both errors are high",
        "Test error is lower than training error"
      ],
      "correctAnswerIndex": 0,
      "explanation": "If the training error is much lower than test error, it indicates the model has memorized the training data."
    },
    {
      "id": 40,
      "questionText": "Which plot is useful to visualize Polynomial Regression fit?",
      "options": [
        "Scatter plot with curve",
        "Line plot",
        "Bar plot",
        "Pie chart"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Scatter plots with a fitted curve help visualize how well the polynomial model fits the data."
    },
    {
      "id": 41,
      "questionText": "How can you check if adding polynomial terms improves your model?",
      "options": [
        "By visualizing the curve",
        "By comparing R-squared values",
        "By adding random features",
        "By increasing degree blindly"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Comparing R-squared and validation errors helps decide if extra polynomial terms improve model accuracy."
    },
    {
      "id": 42,
      "questionText": "What is multicollinearity in Polynomial Regression?",
      "options": [
        "When residuals are independent",
        "When regularization is applied",
        "When output is non-linear",
        "When input features are highly correlated"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Polynomial features (x, x², x³, etc.) are often correlated, causing multicollinearity, which affects coefficient stability."
    },
    {
      "id": 43,
      "questionText": "Which method can help reduce multicollinearity in polynomial models?",
      "options": [
        "Adding noise",
        "Increasing degree",
        "Regularization",
        "Ignoring correlations"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Regularization (Ridge or Lasso) reduces coefficient sensitivity caused by multicollinearity."
    },
    {
      "id": 44,
      "questionText": "What is the purpose of feature scaling in Polynomial Regression?",
      "options": [
        "To make data categorical",
        "To prevent large coefficient values",
        "To remove outliers",
        "To increase variance"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Feature scaling ensures that polynomial features with large values do not dominate during training."
    },
    {
      "id": 45,
      "questionText": "Which scaling method is commonly used before Polynomial Regression?",
      "options": [
        "Min-Max Scaling",
        "Text Vectorization",
        "One-Hot Encoding",
        "Label Encoding"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Min-Max Scaling is often used to bring features within a small range, improving numerical stability."
    },
    {
      "id": 46,
      "questionText": "What is the main advantage of Polynomial Regression over Linear Regression?",
      "options": [
        "Faster computation",
        "Easier interpretation",
        "Ability to fit curved patterns",
        "Less data needed"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Polynomial Regression can model curved, non-linear data patterns that linear models cannot handle."
    },
    {
      "id": 47,
      "questionText": "Which curve fitting problem can Polynomial Regression solve?",
      "options": [
        "Fitting U-shaped and S-shaped data",
        "Fitting straight lines",
        "Finding text patterns",
        "Classifying images"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Polynomial Regression is effective for U-shaped or S-shaped curves that need flexibility in fitting."
    },
    {
      "id": 48,
      "questionText": "Which of these statements about high-degree polynomials is true?",
      "options": [
        "They are simple to interpret",
        "They generalize well",
        "They may oscillate wildly between points",
        "They reduce variance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "High-degree polynomials may fluctuate too much between data points, reducing stability."
    },
    {
      "id": 49,
      "questionText": "What type of regularization combines L1 and L2?",
      "options": [
        "Ridge",
        "Dropout",
        "Elastic Net",
        "Lasso"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Elastic Net combines both L1 (Lasso) and L2 (Ridge) regularization techniques."
    },
    {
      "id": 50,
      "questionText": "What does the alpha parameter control in Ridge and Lasso Regression?",
      "options": [
        "The learning rate",
        "The model degree",
        "The regularization strength",
        "The intercept"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Alpha controls how strongly the model penalizes large coefficient values. Higher alpha means stronger regularization."
    },
    {
      "id": 51,
      "questionText": "What happens if the polynomial degree is set too high on a small dataset?",
      "options": [
        "Perfect fitting always",
        "Underfitting",
        "Overfitting",
        "No change in accuracy"
      ],
      "correctAnswerIndex": 2,
      "explanation": "A high-degree polynomial can memorize the training data, leading to overfitting and poor generalization."
    },
    {
      "id": 52,
      "questionText": "Which of the following helps reduce overfitting in Polynomial Regression?",
      "options": [
        "Using regularization",
        "Using fewer data points",
        "Adding noise to labels",
        "Increasing polynomial degree"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Regularization penalizes large coefficients, which helps reduce overfitting."
    },
    {
      "id": 53,
      "questionText": "What does feature scaling do before applying polynomial features?",
      "options": [
        "Ensures all features contribute equally",
        "Removes outliers",
        "Increases model degree",
        "Makes coefficients smaller"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Feature scaling ensures all input features have similar ranges, preventing domination by one feature."
    },
    {
      "id": 54,
      "questionText": "Why is Polynomial Regression still considered a linear model?",
      "options": [
        "Because it ignores nonlinear patterns",
        "Because coefficients are linear in parameters",
        "Because data must be linear",
        "Because it uses straight lines"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Despite nonlinear features, the model remains linear in terms of its coefficients."
    },
    {
      "id": 55,
      "questionText": "Which sklearn class is used to generate polynomial features?",
      "options": [
        "PolynomialFeatures",
        "PolyScaler",
        "FeatureGenerator",
        "PolynomialModel"
      ],
      "correctAnswerIndex": 0,
      "explanation": "PolynomialFeatures from sklearn.preprocessing expands input data to include polynomial terms."
    },
    {
      "id": 56,
      "questionText": "What is the main disadvantage of using very high-degree polynomials?",
      "options": [
        "Simpler model",
        "Overfitting and numerical instability",
        "Lower computation time",
        "Underfitting"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High-degree polynomials can overfit and suffer from large coefficient swings causing instability."
    },
    {
      "id": 57,
      "questionText": "In Polynomial Regression, which term represents the intercept?",
      "options": [
        "x^n term",
        "x^1 term",
        "x^0 term",
        "x^2 term"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The x^0 term represents the constant (intercept) of the polynomial equation."
    },
    {
      "id": 58,
      "questionText": "What will happen if we skip PolynomialFeatures but use degree > 1 in LinearRegression?",
      "options": [
        "It will use polynomial terms automatically",
        "The model will fail",
        "It will regularize coefficients",
        "It will behave like linear regression"
      ],
      "correctAnswerIndex": 3,
      "explanation": "LinearRegression does not create polynomial terms automatically. Without PolynomialFeatures, it stays linear."
    },
    {
      "id": 59,
      "questionText": "Which cross-validation technique is useful to choose polynomial degree?",
      "options": [
        "Train-Test Split only",
        "Random Sampling",
        "Leave-One-Out CV",
        "No validation needed"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Leave-One-Out Cross Validation works well to find the optimal polynomial degree for small datasets."
    },
    {
      "id": 60,
      "questionText": "How does increasing polynomial degree affect bias and variance?",
      "options": [
        "Increases bias and decreases variance",
        "Decreases bias and increases variance",
        "Increases both",
        "Decreases both"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Higher degrees reduce bias (fit training data better) but increase variance (sensitive to noise)."
    },
    {
      "id": 61,
      "questionText": "What does the term 'interaction features' mean in Polynomial Regression?",
      "options": [
        "Features multiplied together",
        "Random noise features",
        "Unrelated features",
        "Features added together"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Interaction features are created by multiplying original features, capturing combined effects."
    },
    {
      "id": 62,
      "questionText": "What happens to training error as we increase polynomial degree?",
      "options": [
        "Always increases",
        "Usually decreases",
        "Becomes random",
        "Stays constant"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A higher-degree polynomial fits the training data better, reducing training error."
    },
    {
      "id": 63,
      "questionText": "Which step comes immediately after generating polynomial features?",
      "options": [
        "Scaling",
        "Model fitting",
        "Data shuffling",
        "Feature selection"
      ],
      "correctAnswerIndex": 1,
      "explanation": "After generating polynomial features, the next step is fitting the regression model."
    },
    {
      "id": 64,
      "questionText": "What is a typical symptom of overfitting in Polynomial Regression?",
      "options": [
        "Identical train and test results",
        "Low training accuracy",
        "High training accuracy but low test accuracy",
        "High test accuracy"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Overfitting happens when a model performs very well on training data but poorly on unseen data."
    },
    {
      "id": 65,
      "questionText": "How can we make polynomial regression less sensitive to outliers?",
      "options": [
        "Use regularization",
        "Add more noise",
        "Ignore scaling",
        "Increase degree"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Regularization like Ridge or Lasso limits large coefficient values, making the model less sensitive to outliers."
    },
    {
      "id": 66,
      "questionText": "Which metric is least suitable for measuring polynomial regression performance?",
      "options": [
        "R-squared",
        "Confusion Matrix",
        "Mean Absolute Error",
        "Mean Squared Error"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Confusion Matrix is used for classification problems, not regression."
    },
    {
      "id": 67,
      "questionText": "What is the shape of the curve in quadratic regression?",
      "options": [
        "Circle",
        "Parabola",
        "Hyperbola",
        "Line"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A second-degree polynomial forms a parabola."
    },
    {
      "id": 68,
      "questionText": "What does PolynomialFeatures(degree=3) generate for input x?",
      "options": [
        "x^2 only",
        "x^3 only",
        "x, x^2, x^3",
        "x"
      ],
      "correctAnswerIndex": 2,
      "explanation": "It expands the feature set to include x, x^2, and x^3 terms."
    },
    {
      "id": 69,
      "questionText": "When should we use Polynomial Regression over Linear Regression?",
      "options": [
        "When relationship is clearly nonlinear",
        "When slope is constant",
        "When data has many missing values",
        "When data is categorical"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Polynomial Regression captures nonlinear relationships between input and output."
    },
    {
      "id": 70,
      "questionText": "Why does feature scaling matter more for higher-degree polynomials?",
      "options": [
        "Because it reduces intercept",
        "Because it helps visualization",
        "Because polynomial terms grow rapidly",
        "Because it ignores bias"
      ],
      "correctAnswerIndex": 2,
      "explanation": "High-degree terms like x^5 or x^6 can produce large numeric values; scaling keeps them manageable."
    },
    {
      "id": 71,
      "questionText": "What is the main effect of high-degree polynomials on model complexity?",
      "options": [
        "Increases complexity",
        "Keeps complexity same",
        "Removes features",
        "Reduces complexity"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-degree polynomials add more terms, increasing model complexity and flexibility."
    },
    {
      "id": 72,
      "questionText": "Which method helps select the optimal polynomial degree?",
      "options": [
        "Cross-validation",
        "Using only training error",
        "Trial and error",
        "Random selection"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Cross-validation evaluates model performance on unseen data to choose the best polynomial degree."
    },
    {
      "id": 73,
      "questionText": "What is bias in the context of polynomial regression?",
      "options": [
        "Error due to noise",
        "Error due to large coefficients",
        "Error due to model simplicity",
        "Random fluctuation"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Bias measures the error caused by approximating a complex relationship with a simple model."
    },
    {
      "id": 74,
      "questionText": "What is variance in the context of polynomial regression?",
      "options": [
        "Error due to bias",
        "Error due to sensitivity to training data",
        "Error due to model simplicity",
        "Error due to missing features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Variance is the error caused when the model changes too much with small changes in the training data."
    },
    {
      "id": 75,
      "questionText": "Which combination of bias and variance is ideal?",
      "options": [
        "High bias, low variance",
        "Low bias, high variance",
        "High bias, high variance",
        "Low bias, low variance"
      ],
      "correctAnswerIndex": 3,
      "explanation": "The ideal model has low bias (accurate on training) and low variance (stable on new data)."
    },
    {
      "id": 76,
      "questionText": "How can we detect overfitting visually?",
      "options": [
        "By examining coefficients only",
        "By looking at training vs test error",
        "By plotting residuals",
        "By plotting polynomial degree only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Overfitting is indicated when training error is very low but test error is high."
    },
    {
      "id": 77,
      "questionText": "Which method reduces model complexity while keeping fit reasonable?",
      "options": [
        "Regularization",
        "Adding more polynomial terms",
        "Ignoring validation data",
        "Increasing dataset noise"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Regularization penalizes large coefficients, simplifying the model and reducing overfitting."
    },
    {
      "id": 78,
      "questionText": "Why is L1 regularization useful in polynomial regression?",
      "options": [
        "Increases variance",
        "Makes polynomial degree higher",
        "Removes features automatically",
        "Decreases bias only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "L1 regularization (Lasso) can shrink some coefficients to zero, effectively selecting important features."
    },
    {
      "id": 79,
      "questionText": "Why is L2 regularization useful in polynomial regression?",
      "options": [
        "Removes features",
        "Reduces large coefficient impact",
        "Increases polynomial degree",
        "Increases training error only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "L2 regularization (Ridge) penalizes large coefficients to make the model more stable."
    },
    {
      "id": 80,
      "questionText": "Which visualization helps check polynomial fit?",
      "options": [
        "Histogram",
        "Box plot",
        "Scatter plot with fitted curve",
        "Bar chart"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Scatter plots with fitted curves show how well the polynomial captures data patterns."
    },
    {
      "id": 81,
      "questionText": "What does R-squared indicate in polynomial regression?",
      "options": [
        "Mean squared error",
        "Training time",
        "Number of features",
        "Proportion of variance explained"
      ],
      "correctAnswerIndex": 3,
      "explanation": "R-squared measures how much of the target variance is captured by the model."
    },
    {
      "id": 82,
      "questionText": "Which error metric gives average magnitude of prediction errors?",
      "options": [
        "Mean Absolute Error",
        "Variance",
        "R-squared",
        "Mean Squared Error"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Mean Absolute Error calculates the average absolute difference between predicted and actual values."
    },
    {
      "id": 83,
      "questionText": "Which metric penalizes large errors more heavily?",
      "options": [
        "MSE",
        "MAE",
        "R-squared",
        "Correlation coefficient"
      ],
      "correctAnswerIndex": 0,
      "explanation": "MSE squares the errors, giving higher weight to large deviations."
    },
    {
      "id": 84,
      "questionText": "Why is cross-validation important in polynomial regression?",
      "options": [
        "To ignore overfitting",
        "To fit data perfectly",
        "To evaluate model on unseen data",
        "To increase polynomial degree"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Cross-validation tests model performance on unseen data, helping select optimal degree and reduce overfitting."
    },
    {
      "id": 85,
      "questionText": "Which technique can combine multiple polynomial models for better prediction?",
      "options": [
        "Single model fitting",
        "L1 regularization only",
        "Feature scaling",
        "Bagging"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Bagging combines predictions from multiple models to reduce variance and improve accuracy."
    },
    {
      "id": 86,
      "questionText": "Which problem arises if polynomial degree is too low?",
      "options": [
        "Feature scaling",
        "Underfitting",
        "Regularization",
        "Overfitting"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A low-degree polynomial may fail to capture data patterns, causing underfitting."
    },
    {
      "id": 87,
      "questionText": "Which method automatically selects important polynomial terms?",
      "options": [
        "Lasso Regression",
        "Ridge Regression",
        "Cross-validation only",
        "Standard Linear Regression"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Lasso regression can shrink some coefficients to zero, selecting the most important features."
    },
    {
      "id": 88,
      "questionText": "Which is a symptom of multicollinearity in polynomial regression?",
      "options": [
        "Low variance",
        "High R-squared always",
        "Unstable coefficients",
        "Zero training error"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Polynomial terms are often correlated, making coefficients unstable and sensitive to small data changes."
    },
    {
      "id": 89,
      "questionText": "Which of these is an advantage of polynomial regression?",
      "options": [
        "Fits linear data only",
        "Can fit nonlinear patterns",
        "Removes outliers automatically",
        "Reduces training data needed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Polynomial regression captures nonlinear relationships between variables."
    },
    {
      "id": 90,
      "questionText": "Which is a common step before polynomial regression on real data?",
      "options": [
        "Removing target variable",
        "Feature scaling",
        "Increasing polynomial degree blindly",
        "Random noise addition"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Feature scaling ensures all polynomial terms are on a similar scale for stable model training."
    },
    {
      "id": 91,
      "questionText": "Which model would you choose for a U-shaped data trend?",
      "options": [
        "Linear Regression",
        "Logistic Regression",
        "Quadratic Polynomial Regression",
        "Cubic Regression"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Quadratic (degree 2) polynomial regression is ideal for U-shaped patterns."
    },
    {
      "id": 92,
      "questionText": "Which model would you choose for an S-shaped trend?",
      "options": [
        "Quadratic Regression",
        "Cubic Regression",
        "Linear Regression",
        "Logistic Regression"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Cubic (degree 3) polynomial regression can fit S-shaped trends with one inflection point."
    },
    {
      "id": 93,
      "questionText": "Which is an indicator of underfitting in polynomial regression?",
      "options": [
        "Low bias",
        "High variance",
        "Low training error and high test error",
        "High training error and high test error"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Underfitting shows both training and test errors are high due to a too-simple model."
    },
    {
      "id": 94,
      "questionText": "What is the effect of regularization on polynomial coefficients?",
      "options": [
        "Increases bias only",
        "Reduces magnitude of coefficients",
        "Increases all coefficients",
        "Removes training data"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Regularization penalizes large coefficients to reduce overfitting."
    },
    {
      "id": 95,
      "questionText": "Which method can evaluate polynomial regression stability across datasets?",
      "options": [
        "Only visualization",
        "Train-test split",
        "Cross-validation",
        "Random coefficient assignment"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Cross-validation tests the model on multiple data splits to check stability and generalization."
    },
    {
      "id": 96,
      "questionText": "Why should we avoid excessively high-degree polynomials?",
      "options": [
        "They increase overfitting",
        "They always improve R-squared",
        "They reduce bias",
        "They remove noise automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Excessively high-degree polynomials may fit noise rather than the actual pattern, causing overfitting."
    },
    {
      "id": 97,
      "questionText": "Which method can simplify a polynomial regression model?",
      "options": [
        "Ignoring validation",
        "Increasing degree",
        "Adding noise",
        "Regularization"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Regularization reduces large coefficients and can simplify the model."
    },
    {
      "id": 98,
      "questionText": "Which of the following is true about polynomial regression predictions?",
      "options": [
        "Always linear",
        "Independent of input",
        "Always quadratic",
        "Can be nonlinear even with linear coefficients"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Predictions can be nonlinear because the input features are polynomial terms, even if the model is linear in coefficients."
    },
    {
      "id": 99,
      "questionText": "Which is a good strategy for selecting polynomial degree?",
      "options": [
        "Ignoring training error",
        "Always using degree 5",
        "Using cross-validation",
        "Trial and error without validation"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Cross-validation helps find a degree that balances underfitting and overfitting."
    },
    {
      "id": 100,
      "questionText": "What is the final goal of polynomial regression?",
      "options": [
        "To remove features",
        "To increase variance",
        "To predict continuous values with nonlinear patterns",
        "To classify data"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Polynomial regression aims to predict continuous outcomes while capturing nonlinear relationships."
    }
  ]
}