File size: 23,815 Bytes
dd757c3
 
 
 
 
a62ac7b
 
eb24714
 
 
a62ac7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd757c3
 
 
a62ac7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef73f57
eb24714
a62ac7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb24714
a62ac7b
 
 
 
 
 
eb24714
 
 
 
 
dd757c3
a62ac7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef73f57
 
 
 
a62ac7b
 
eb24714
a62ac7b
ef73f57
eb24714
ef73f57
 
 
eb24714
 
ef73f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb24714
 
ef73f57
 
 
 
 
 
 
 
 
 
 
 
 
eb24714
ef73f57
d79ded4
eb24714
 
 
 
 
 
 
 
 
d79ded4
eb24714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d79ded4
dd757c3
 
eb24714
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
{% extends "layout.html" %}

{% block content %}<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>πŸ”¬ Visual Random Forest Classifier (2D)</title>
   <script src="https://cdn.plot.ly/plotly-2.32.0.min.js"></script>

      <script src="https://cdn.tailwindcss.com"></script>
    <script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
    <style>
        /* Basic styling for info icons and tooltips */
        .info-icon {
            cursor: help;
            margin-left: 5px;
            color: #6B7280; /* gray-500 */
            position: relative; /* Needed for tooltip positioning */
            display: inline-block;
        }
        .tooltip {
            visibility: hidden;
            width: 250px; /* Wider for more detail */
            background-color: #333;
            color: #fff;
            text-align: center;
            border-radius: 6px;
            padding: 8px 10px; /* More padding */
            position: absolute;
            z-index: 10; /* Above other elements */
            bottom: 125%; /* Position above the icon */
            left: 50%;
            margin-left: -125px; /* Center the tooltip */
            opacity: 0;
            transition: opacity 0.3s;
            font-size: 0.85rem; /* Slightly smaller font for tooltips */
            line-height: 1.4;
        }
        .info-icon:hover .tooltip {
            visibility: visible;
            opacity: 1;
        }
        /* Triangle for tooltip (optional) */
        .tooltip::after {
            content: "";
            position: absolute;
            top: 100%;
            left: 50%;
            margin-left: -5px;
            border-width: 5px;
            border-style: solid;
            border-color: #333 transparent transparent transparent;
        }

        /* Styling for highlighting text in explanations */
        .highlight-blue { color: #2563EB; font-weight: 600; } /* Tailwind blue-600 */
        .highlight-red { color: #DC2626; font-weight: 600; }  /* Tailwind red-600 */
        .highlight-green { color: #16A34A; font-weight: 600; } /* Tailwind green-600 */
        .highlight-bold { font-weight: 600; }

        /* Styles for the flow chart boxes (reusing from KNN) */
        .flow-box {
            background-color: #F3F4F6; /* gray-100 */
            border-radius: 0.5rem; /* rounded-lg */
            padding: 1.5rem; /* p-6 */
            text-align: center;
            box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); /* shadow-md */
            min-height: 120px; /* Ensure boxes have some height */
            display: flex;
            flex-direction: column;
            justify-content: center;
            align-items: center;
        }
        .flow-arrow {
            font-size: 2.5rem;
            color: #9CA3AF; /* gray-400 */
            margin: 0 1rem;
            display: flex;
            align-items: center;
            justify-content: center;
        }
    </style>
</head>

<body class="bg-gray-100 text-gray-900">
    <div class="max-w-5xl mx-auto mt-10 bg-white p-8 rounded-xl shadow-lg">
        <h1 class="text-3xl font-bold mb-4 text-center">πŸ”¬ Visual Random Forest Classifier (2D)</h1>
        <p class="mb-6 text-center text-gray-600">
            An ensemble learning method for classification that operates by constructing a multitude of decision trees.
        </p>

        <div class="grid grid-cols-1 md:grid-cols-2 gap-6 mb-6">
            <div>
                <label for="testX" class="block font-medium mb-1 flex items-center">
                    Test Point X1:
                    <span class="info-icon">
                        &#9432;
                        <span class="tooltip">
                            The <span class="highlight-bold">X1-coordinate</span> of the new data point (<span class="highlight-green">green 'x'</span>) that you want the Random Forest to classify.
                        </span>
                    </span>
                </label>
                <input type="number" id="testX" value="4" class="w-24 px-2 py-1 border rounded" onchange="predict()">
            </div>

            <div>
                <label for="testY" class="block font-medium mb-1 flex items-center">
                    Test Point X2:
                    <span class="info-icon">
                        &#9432;
                        <span class="tooltip">
                            The <span class="highlight-bold">X2-coordinate</span> of the new data point (<span class="highlight-green">green 'x'</span>) that you want the Random Forest to classify.
                        </span>
                    </span>
                </label>
                <input type="number" id="testY" value="2" class="w-24 px-2 py-1 border rounded" onchange="predict()">
            </div>
        </div>

        <div class="mb-4 text-center">
            <button onclick="predict()" class="bg-blue-500 hover:bg-blue-600 text-white px-6 py-2 rounded-lg text-lg transition duration-200">
                Run Random Forest Prediction
            </button>
        </div>

        <div id="plot" class="border rounded-lg shadow-inner h-[400px] md:h-[500px] w-full"></div>
        <p id="result" class="mt-4 font-bold text-lg text-center text-gray-800"></p>

        <div class="mt-10 p-6 bg-purple-50 rounded-xl border border-purple-200">
            <h2 class="text-2xl font-bold mb-6 text-center text-purple-700">How Random Forest Classifies Your Data</h2>
            <div class="flex flex-wrap justify-center items-center gap-4">
                <div class="flow-box bg-purple-100">
                    <span class="text-5xl mb-2">🌳</span>
                    <p class="text-lg font-semibold text-purple-800">Many Decision Trees</p>
                    <p class="text-sm text-purple-600">Each trained on a random subset</p>
                </div>
                <div class="flow-arrow">&rarr;</div>
                <div class="flow-box bg-purple-100">
                    <span class="text-5xl mb-2">πŸ“</span>
                    <p class="text-lg font-semibold text-purple-800">New Data Point</p>
                    <p class="text-sm text-purple-600">Sent to ALL trees</p>
                </div>
                <div class="flow-arrow">&rarr;</div>
                <div class="flow-box bg-purple-100">
                    <span class="text-5xl mb-2">πŸ“Š</span>
                    <p class="text-lg font-semibold text-purple-800">Individual Predictions</p>
                    <p class="text-sm text-purple-600">Each tree "votes" on the class</p>
                </div>
                <div class="flow-arrow block md:hidden">&darr;</div>
                <div class="flow-arrow hidden md:block">&rarr;</div>
                <div class="flow-box bg-purple-100">
                    <span class="text-5xl mb-2">πŸ—³οΈ</span>
                    <p class="text-lg font-semibold text-purple-800">Majority Vote</p>
                    <p class="text-sm text-purple-600">Most common prediction wins</p>
                </div>
                <div class="flow-arrow">&rarr;</div>
                <div class="flow-box bg-purple-100">
                    <span class="text-5xl mb-2">βœ…</span>
                    <p class="text-lg font-semibold text-purple-800">Final Classification</p>
                    <p class="text-sm text-purple-600">Robust and accurate</p>
                </div>
            </div>


            <p class="mt-6 text-center text-gray-600 text-sm">
                Random Forest combines the power of many individual decision trees to make a more robust and accurate classification, leveraging collective intelligence.
            </p>
        </div>

        <div class="mt-8 text-center">
<a href="/liar" class="bg-purple-600 text-white px-4 py-2 rounded hover:bg-purple-700">
  πŸ” Go to Liar Predictor
</a>



        <div class="mt-8 p-6 bg-gray-50 rounded-lg border border-gray-200">
            <h2 class="text-2xl font-bold mb-4 text-center text-blue-700">Understanding Random Forest</h2>

            <p class="mb-4 text-gray-700">
                Random Forest is an <span class="highlight-bold">ensemble learning method</span> that builds a "forest" of decision trees. For classification tasks, it outputs the class that is the mode of the classes (majority vote) of the individual trees. It's known for its high accuracy and ability to handle complex datasets.
            </p>

            <h3 class="text-xl font-semibold mb-2">Key Concepts:</h3>
            <ul class="list-disc list-inside text-gray-700 mb-4">
                <li class="mb-2">
                    <span class="highlight-bold">Ensemble Learning:</span> Instead of relying on a single model, Random Forest combines predictions from multiple models (decision trees) to improve overall accuracy and robustness.
                </li>
                <li class="mb-2">
                    <span class="highlight-bold">Decision Trees:</span> Each tree in the forest makes a prediction independently. A single decision tree creates axis-parallel splits, leading to rectangular decision regions.
                </li>
                <li class="mb-2">
                    <span class="highlight-bold">Randomness:</span> Random Forest introduces randomness in two ways:
                    <ol class="list-decimal list-inside ml-4">
                        <li><span class="highlight-bold">Bagging (Bootstrap Aggregating):</span> Each tree is trained on a random subset of the training data (with replacement).</li>
                        <li><span class="highlight-bold">Feature Randomness:</span> When splitting a node, each tree considers only a random subset of the available features. This decorrelates the trees.</li>
                    </ol>
                </li>
                <li class="mb-2">
                    <span class="highlight-bold">Decision Boundary:</span> Unlike a single decision tree's sharp, rectangular boundaries, the Random Forest's decision boundary is the aggregated result of many trees. This often results in a smoother, more complex, and often non-linear boundary, as seen in the plot.
                </li>
            </ul>

            <h3 class="text-xl font-semibold mb-2">How this Visualization Works:</h3>
            <ul class="list-disc list-inside text-gray-700 mb-4">
                <li class="mb-2">
                    <span class="highlight-red">Class 1 (Red Circles):</span> These are your labeled data points belonging to Class 1.
                </li>
                <li class="mb-2">
                    <span class="highlight-blue">Class 0 (Blue Circles):</span> These are your labeled data points belonging to Class 0.
                </li>
                <li class="mb-2">
                    <span class="highlight-green">Test Point (Green 'x'):</span> This is the new, unlabeled data point you want to classify. You can adjust its X1 and X2 coordinates.
                </li>
                <li class="mb-2">
                    <span class="highlight-bold">Colored Background:</span> This represents the <span class="highlight-bold">decision boundary</span> of the trained Random Forest model.
                    <ul>
                        <li><span class="highlight-red">Red regions</span> indicate areas where the Random Forest predicts Class 1.</li>
                        <li><span class="highlight-blue">Blue regions</span> indicate areas where the Random Forest predicts Class 0.</li>
                    </ul>
                    The smoothness and complexity of this boundary are a result of the ensemble nature of Random Forest.
                </li>
            </ul>

            <p class="mt-4 text-sm text-gray-600">
                *The plot will show the decision boundary by predicting the class for a grid of points covering the entire plot area. The color of each grid point reflects the predicted class, creating the background regions.*
            </p>
        </div>
    </div>

    <script>
        // Sample labeled points (training data) - you can adjust these
        // Using distinct clusters for better visualization of decision boundary
        let labeledPoints = [
            // Class 0 (Blue)
            [1.0, 1.0, 0], [1.5, 1.8, 0], [2.0, 1.2, 0], [1.2, 2.5, 0], [2.5, 2.0, 0],
            [3.0, 1.0, 0], [3.5, 2.2, 0], [2.8, 0.5, 0], [1.8, 0.8, 0], [0.5, 2.0, 0],
            [0.8, 3.0, 0], [2.2, 3.5, 0], [3.2, 3.0, 0], [4.0, 2.5, 0], [4.5, 1.8, 0],

            // Class 1 (Red)
            [5.0, 5.0, 1], [5.5, 4.2, 1], [6.0, 5.8, 1], [4.8, 6.0, 1], [6.2, 6.5, 1],
            [7.0, 5.0, 1], [6.5, 4.0, 1], [5.8, 6.8, 1], [7.2, 6.0, 1], [7.8, 5.5, 1],
            [8.0, 7.0, 1], [7.5, 7.5, 1], [6.8, 7.2, 1], [5.2, 7.8, 1], [4.0, 6.0, 1]
        ];

        function getTestPoint() {
            const testXInput = document.getElementById('testX');
            const testYInput = document.getElementById('testY');

            const testX = parseFloat(testXInput.value);
            const testY = parseFloat(testYInput.value);

            if (isNaN(testX) || isNaN(testY)) {
                document.getElementById("result").innerText = "❌ Please enter valid numbers for Test Point X1 and X2.";
                testXInput.value = 4; // Reset to default
                testYInput.value = 2; // Reset to default
                return null;
            }
            return [testX, testY];
        }

        async function predict() {
            const testPoint = getTestPoint();
            if (testPoint === null) {
                return; // Stop if testPoint input is invalid
            }

            document.getElementById("result").innerText = "Calculating decision boundary and prediction...";

            console.log("Predicting with test point =", testPoint);

            // *** API Call to your Python Backend ***
            const res = await fetch("/rf_visual_predict", {
                method: "POST",
                headers: { 'Content-Type': 'application/json' },
                body: JSON.stringify({
                    points: labeledPoints,
                    test_point: testPoint
                    // You could add n_estimators, max_depth here if you want them interactive
                })
            });

            if (!res.ok) {
                document.getElementById("result").innerText = `❌ Error from backend: ${res.statusText}. Ensure your Flask backend is running.`;
                console.error("Backend error:", res.statusText);
                return;
            }

            const data = await res.json();
            console.log("Response:", data);

            document.getElementById("result").innerText = `βœ… Predicted Class for (${testPoint[0]}, ${testPoint[1]}): ${data.prediction == 0 ? 'Class 0 (Blue)' : 'Class 1 (Red)'}`;

            // Prepare traces for Plotly
            const class0 = labeledPoints.filter(p => p[2] == 0);
            const class1 = labeledPoints.filter(p => p[2] == 1);

            const trace0 = {
                x: class0.map(p => p[0]),
                y: class0.map(p => p[1]),
                mode: 'markers',
                name: 'Class 0',
                marker: { color: 'blue', size: 10, symbol: 'circle' }
            };

            const trace1 = {
                x: class1.map(p => p[0]),
                y: class1.map(p => p[1]),
                mode: 'markers',
                name: 'Class 1',
                marker: { color: 'red', size: 10, symbol: 'circle' }
            };

            const testTrace = {
                x: [testPoint[0]],
                y: [testPoint[1]],
                mode: 'markers',
                name: 'Test Point',
                marker: { color: 'green', size: 14, symbol: 'x' }
            };

            // Decision Boundary (Contour/Heatmap)
            // The 'z' data comes from the backend, representing predictions on a grid
            const boundaryTrace = {
                z: data.decision_boundary_z,
                x: data.decision_boundary_x_coords, // X coordinates of the grid
                y: data.decision_boundary_y_coords, // Y coordinates of the grid
                type: 'contour',
                colorscale: [
                    ['0.0', 'rgba(0, 0, 255, 0.2)'], // Light blue for Class 0
                    ['1.0', 'rgba(255, 0, 0, 0.2)']  // Light red for Class 1
                ],
                showscale: false, // No color bar needed
                hoverinfo: 'skip', // Don't show hover details for the boundary
                opacity: 0.8 // Make it slightly transparent
            };

            // Plotly layout and redraw
            Plotly.newPlot('plot', [boundaryTrace, trace0, trace1, testTrace], {
                title: `Random Forest Decision Boundary`,
                xaxis: { title: 'X1', range: [0, 9] }, // Adjust range based on your data
                yaxis: { title: 'X2', range: [0, 9] }, // Adjust range
                autosize: true, // Auto resize
                hovermode: 'closest',
                margin: { t: 40, b: 40, l: 40, r: 10 } // Clean margins
            }, { responsive: true });
        }

        window.onload = () => predict();
    </script>
    
    <div class="mt-12 bg-white rounded-lg shadow-lg p-6 border border-gray-300"> 
        <h2 class="text-2xl font-bold text-center text-purple-700 mb-4">🌳 Single Tree vs Random Forest</h2>
        <div id="treeComparisonPlot" class="w-full h-[800px] md:h-[500px]"></div>
    </div>

<script>
  // This function detects screen size and returns the appropriate layout
  function getTreeLayout() {
    const isMobile = window.innerWidth < 768; // Standard mobile breakpoint

    const singleTreeTrace = {
        type: "scatter",
        mode: "markers+lines+text",
        x: [2, 1, 3, 0.5, 1.5, 2.5, 3.5],
        y: [3, 2, 2, 1, 1, 1, 1],
        text: ["Root", "", "", "class 1", "class 1", "class 2", "class 2"],
        textposition: "top center",
        marker: { size: isMobile ? 20 : 30, color: "royalblue" }, // Smaller dots on mobile
        line: { color: 'royalblue', width: 2 },
        name: "Single Decision Tree",
        showlegend: false,
        xaxis: 'x1',
        yaxis: 'y1'
    };

    const forestTraces = [
        {
        type: "scatter",
        mode: "markers+lines+text",
        x: [7, 6.5, 7.5],
        y: [3, 2, 2],
        text: ["Tree 1", "class 1", "class 1"],
        textposition: "top center",
        marker: { size: isMobile ? 18 : 28, color: "red" },
        line: { color: 'red', width: 2 },
        showlegend: false,
        xaxis: 'x2',
        yaxis: 'y2'
        },
        {
        type: "scatter",
        mode: "markers+lines+text",
        x: [9, 8.5, 9.5],
        y: [3, 2, 2],
        text: ["Tree 2", "class 2", "class 2"],
        textposition: "top center",
        marker: { size: isMobile ? 18 : 28, color: "green" },
        line: { color: 'green', width: 2 },
        showlegend: false,
        xaxis: 'x2',
        yaxis: 'y2'
        },
        {
        type: "scatter",
        mode: "markers+lines+text",
        x: [11, 10.5, 11.5],
        y: [3, 2, 2],
        text: ["Tree 3", "class 3", "class 3"],
        textposition: "top center",
        marker: { size: isMobile ? 18 : 28, color: "orange" },
        line: { color: 'orange', width: 2 },
        showlegend: false,
        xaxis: 'x2',
        yaxis: 'y2'
        }
    ];

    let layout;

    if (isMobile) {
        // *** MOBILE LAYOUT: Stacked Vertically ***
        layout = {
            grid: { rows: 2, columns: 1, pattern: 'independent' },
            // Top Graph (Single Tree)
            xaxis: { 
                title: { text: "Single Decision Tree", font: { size: 14 } },
                showgrid: false, zeroline: false 
            },
            yaxis: { domain: [0.55, 1], showgrid: false, zeroline: false },
            
            // Bottom Graph (Random Forest)
            xaxis2: { 
                title: { text: "Random Forest (Multiple Trees)", font: { size: 14 } },
                showgrid: false, zeroline: false 
            },
            yaxis2: { domain: [0, 0.45], showgrid: false, zeroline: false },
            
            showlegend: false,
            margin: { t: 40, b: 40, l: 20, r: 20 },
            autosize: true,
            title: { text: "Visualizing Decision Tree vs Random Forest", font: { size: 16 } }
        };
    } else {
        // *** DESKTOP LAYOUT: Side-by-Side ***
        layout = {
            grid: { rows: 1, columns: 2, pattern: 'independent' },
            // Left Graph
            xaxis: {
                domain: [0, 0.45],
                title: { text: "Single Decision Tree", font: { size: 14 } },
                showgrid: false, zeroline: false
            },
            yaxis: { domain: [0, 1], showgrid: false, zeroline: false },
            
            // Right Graph
            xaxis2: {
                domain: [0.55, 1],
                title: { text: "Random Forest (Multiple Trees)", font: { size: 14 } },
                showgrid: false, zeroline: false
            },
            yaxis2: { domain: [0, 1], showgrid: false, zeroline: false },
            
            showlegend: false,
            margin: { t: 50, b: 40 },
            autosize: true,
            title: { text: "Visualizing Decision Tree vs Random Forest", font: { size: 18 } }
        };
    }

    return { traces: [singleTreeTrace, ...forestTraces], layout: layout };
  }

  function drawTreePlot() {
      const data = getTreeLayout();
      Plotly.react('treeComparisonPlot', data.traces, data.layout, {responsive: true});
  }

  // Initial draw
  drawTreePlot();

  // Redraw on resize to switch layouts
  window.addEventListener('resize', drawTreePlot);
</script>

    <div class="mt-8 text-gray-800 space-y-4">
    <h3 class="text-xl font-bold text-blue-700">πŸ” Working of Random Forest Algorithm</h3>
    <ul class="list-disc list-inside space-y-2">
      <li><strong>Create Many Decision Trees:</strong> The algorithm makes many decision trees using different random parts of the data.</li>
      <li><strong>Pick Random Features:</strong> Each tree picks a random subset of features to make splits. This keeps trees diverse.</li>
      <li><strong>Each Tree Makes a Prediction:</strong> Every tree gives its own output.</li>
      <li><strong>Combine the Predictions:</strong>
        <ul class="ml-6 list-disc">
          <li><em>Classification:</em> Uses majority voting across trees.</li>
          <li><em>Regression:</em> Averages the outputs of all trees.</li>
        </ul>
      </li>
      <li><strong>Why It Works:</strong> Randomness prevents overfitting and improves overall prediction accuracy.</li>
    </ul>

    <h3 class="text-xl font-bold text-blue-700 mt-6">🌟 Key Features of Random Forest</h3>
    <ul class="list-disc list-inside space-y-2">
      <li><strong>Handles Missing Data:</strong> Works even with some missing values.</li>
      <li><strong>Shows Feature Importance:</strong> Identifies most important features for prediction.</li>
      <li><strong>Handles Complex Data:</strong> Efficient with large datasets and many features.</li>
      <li><strong>Versatile:</strong> Works for both classification and regression tasks.</li>
    </ul>

    <h3 class="text-xl font-bold text-blue-700 mt-6">πŸ“Œ Assumptions of Random Forest</h3>
    <ul class="list-disc list-inside space-y-2">
      <li>Each tree is independent and makes its own prediction.</li>
      <li>Each tree is trained on random samples and features.</li>
      <li>A large enough dataset is required for diverse learning.</li>
      <li>Combining different trees improves accuracy.</li>
    </ul>
  </div>
</div>

</body>
</html>
{% endblock %}