Spaces:
Runtime error
Runtime error
Commit
·
7cf68b3
1
Parent(s):
2415a29
Upload 5 files
Browse files
main.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
model.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.llms import HuggingFacePipeline
|
| 2 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 3 |
+
from langchain.chains import RetrievalQA
|
| 4 |
+
from transformers import (
|
| 5 |
+
AutoTokenizer,
|
| 6 |
+
AutoModelForSeq2SeqLM,
|
| 7 |
+
pipeline,
|
| 8 |
+
GenerationConfig
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
class lamini:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
pass
|
| 14 |
+
|
| 15 |
+
def load_model(self, task="text2text-generation", **kwargs) -> HuggingFacePipeline:
|
| 16 |
+
"""Returns a pipeline for the model
|
| 17 |
+
- model: MBZUAI/LaMini-Flan-T5-248M
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
_type_: _description_
|
| 21 |
+
"""
|
| 22 |
+
model_id = "MBZUAI/LaMini-Flan-T5-248M"
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
| 25 |
+
gen_config = GenerationConfig.from_pretrained(model_id)
|
| 26 |
+
|
| 27 |
+
max_length = kwargs.get("max_length", 512)
|
| 28 |
+
temperature = kwargs.get("temperature", 0)
|
| 29 |
+
top_p = kwargs.get("top_p", 0.95)
|
| 30 |
+
repetition_penalty = kwargs.get("repetition_penalty", 1.15)
|
| 31 |
+
|
| 32 |
+
pipe = pipeline(
|
| 33 |
+
"text2text-generation",
|
| 34 |
+
model=model,
|
| 35 |
+
tokenizer=tokenizer,
|
| 36 |
+
generation_config=gen_config,
|
| 37 |
+
max_length=max_length,
|
| 38 |
+
top_p=top_p,
|
| 39 |
+
temperature=temperature,
|
| 40 |
+
repetition_penalty=repetition_penalty,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 44 |
+
return llm
|
| 45 |
+
|
| 46 |
+
class templates:
|
| 47 |
+
def __init__(self, llm: HuggingFacePipeline):
|
| 48 |
+
self.llm = llm
|
| 49 |
+
|
| 50 |
+
def summarize(self, text, **kwargs):
|
| 51 |
+
"""Summarize text
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
text (str): text to summarize
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
str: summarized text
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
instruction = "summarize for better understanding: "
|
| 61 |
+
text = instruction + text
|
| 62 |
+
return self.llm(text, **kwargs)
|
| 63 |
+
|
| 64 |
+
def generate_tile(self, text, **kwargs):
|
| 65 |
+
"""Generate a title for text
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
text (str): text to generate title for
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
str: title
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
instruction = "generate a title for this text: "
|
| 75 |
+
text = instruction + text
|
| 76 |
+
return self.llm(text, **kwargs)
|
| 77 |
+
|
| 78 |
+
class qa_template:
|
| 79 |
+
def __init__(self, llm):
|
| 80 |
+
from langchain.chains.retrieval_qa.base import BaseRetrievalQA
|
| 81 |
+
self.llm = llm
|
| 82 |
+
self.qa_inf: BaseRetrievalQA
|
| 83 |
+
|
| 84 |
+
def load(self, knowledge_base):
|
| 85 |
+
"""Load knowledge base
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
knowledge_base (str): knowledge base to load
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
BaseRetrievalQA: (optional to use) returns QA interface
|
| 92 |
+
"""
|
| 93 |
+
from utils import LangChainChunker
|
| 94 |
+
from langchain.vectorstores import Chroma
|
| 95 |
+
from langchain.chains import RetrievalQA
|
| 96 |
+
|
| 97 |
+
embeds = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large")
|
| 98 |
+
chunker = LangChainChunker(knowledge_base)
|
| 99 |
+
chunks = chunker.chunker(size=512)
|
| 100 |
+
db = Chroma.from_texts(chunks, embeds)
|
| 101 |
+
retriever = db.as_retriever()
|
| 102 |
+
|
| 103 |
+
qa_inf = RetrievalQA.from_chain_type(
|
| 104 |
+
llm=self.llm, chain_type="stuff", retriever=retriever
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
self.qa_inf = qa_inf
|
| 108 |
+
return qa_inf
|
| 109 |
+
|
| 110 |
+
def start_gradio(self, title: str):
|
| 111 |
+
"""Start gradio interface
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
_type_: _description_
|
| 115 |
+
"""
|
| 116 |
+
import gradio as gr
|
| 117 |
+
|
| 118 |
+
def interface(msg, history):
|
| 119 |
+
res = self.qa_inf.run(msg)
|
| 120 |
+
return str(res)
|
| 121 |
+
|
| 122 |
+
ui = gr.ChatInterface(
|
| 123 |
+
fn=interface,
|
| 124 |
+
examples=["What is the video about?", "key points of the video"],
|
| 125 |
+
title=f"Question Mode - {title}",
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
ui.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
nltk
|
| 4 |
+
youtube_transcript_api
|
| 5 |
+
accelerate
|
| 6 |
+
langchain
|
| 7 |
+
yt-dlp
|
| 8 |
+
rich
|
| 9 |
+
chromadb
|
| 10 |
+
InstructorEmbedding
|
| 11 |
+
sentence_transformers
|
utils.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class LangChainChunker:
|
| 2 |
+
def __init__(self, text):
|
| 3 |
+
self.text = text
|
| 4 |
+
|
| 5 |
+
def chunker(self, size=1000):
|
| 6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 7 |
+
|
| 8 |
+
# attach the duration of the video to the chunk
|
| 9 |
+
# [[chunk, duration]]
|
| 10 |
+
|
| 11 |
+
text_splitter = CharacterTextSplitter(
|
| 12 |
+
separator=" ",
|
| 13 |
+
chunk_size=size,
|
| 14 |
+
chunk_overlap=0.9,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
return text_splitter.split_text(self.text)
|
| 18 |
+
|
| 19 |
+
def __sizeof__(self) -> int:
|
| 20 |
+
count = 0
|
| 21 |
+
for _ in self.text:
|
| 22 |
+
count += 1
|
| 23 |
+
return count
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def getSubsText(video_id="", getGenerated=False):
|
| 27 |
+
from youtube_transcript_api import YouTubeTranscriptApi as ytapi
|
| 28 |
+
from youtube_transcript_api.formatters import TextFormatter
|
| 29 |
+
|
| 30 |
+
tList = ytapi.list_transcripts(video_id)
|
| 31 |
+
data = ""
|
| 32 |
+
if getGenerated:
|
| 33 |
+
# TODO: implement getGenerated
|
| 34 |
+
pass
|
| 35 |
+
|
| 36 |
+
for t in tList:
|
| 37 |
+
data = t.fetch()
|
| 38 |
+
|
| 39 |
+
return (TextFormatter().format_transcript(data)).replace("\n", " ")
|
| 40 |
+
|
| 41 |
+
|