Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clémentine
commited on
Commit
·
412f8e5
1
Parent(s):
a50a787
updated with meg's suggestions + cleaned up a bit
Browse files- app.py +13 -6
- main_backend_harness.py +1 -5
- main_backend_lighteval.py +1 -6
- src/backend/manage_requests.py +29 -14
app.py
CHANGED
|
@@ -1,5 +1,8 @@
|
|
| 1 |
import logging
|
|
|
|
|
|
|
| 2 |
from src.logging import configure_root_logger
|
|
|
|
| 3 |
logging.getLogger("httpx").setLevel(logging.WARNING)
|
| 4 |
logging.getLogger("numexpr").setLevel(logging.WARNING)
|
| 5 |
logging.getLogger("absl").setLevel(logging.WARNING)
|
|
@@ -36,8 +39,8 @@ links_md = f"""
|
|
| 36 |
| Results Repo | [{RESULTS_REPO}](https://huggingface.co/datasets/{RESULTS_REPO}) |
|
| 37 |
"""
|
| 38 |
|
| 39 |
-
def
|
| 40 |
-
logger.info("
|
| 41 |
run_auto_eval()
|
| 42 |
|
| 43 |
|
|
@@ -55,10 +58,14 @@ with gr.Blocks(js=dark_mode_gradio_js) as demo:
|
|
| 55 |
button = gr.Button("Manually Run Evaluation")
|
| 56 |
gr.Markdown(links_md)
|
| 57 |
|
| 58 |
-
dummy = gr.Markdown(
|
| 59 |
-
|
| 60 |
-
button.click(fn=button_auto_eval, inputs=[], outputs=[])
|
| 61 |
|
|
|
|
| 62 |
|
| 63 |
if __name__ == '__main__':
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 3 |
+
|
| 4 |
from src.logging import configure_root_logger
|
| 5 |
+
|
| 6 |
logging.getLogger("httpx").setLevel(logging.WARNING)
|
| 7 |
logging.getLogger("numexpr").setLevel(logging.WARNING)
|
| 8 |
logging.getLogger("absl").setLevel(logging.WARNING)
|
|
|
|
| 39 |
| Results Repo | [{RESULTS_REPO}](https://huggingface.co/datasets/{RESULTS_REPO}) |
|
| 40 |
"""
|
| 41 |
|
| 42 |
+
def auto_eval():
|
| 43 |
+
logger.info("Triggering Auto Eval")
|
| 44 |
run_auto_eval()
|
| 45 |
|
| 46 |
|
|
|
|
| 58 |
button = gr.Button("Manually Run Evaluation")
|
| 59 |
gr.Markdown(links_md)
|
| 60 |
|
| 61 |
+
#dummy = gr.Markdown(auto_eval, every=REFRESH_RATE, visible=False)
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
button.click(fn=auto_eval, inputs=[], outputs=[])
|
| 64 |
|
| 65 |
if __name__ == '__main__':
|
| 66 |
+
scheduler = BackgroundScheduler()
|
| 67 |
+
scheduler.add_job(auto_eval, "interval", seconds=REFRESH_RATE)
|
| 68 |
+
scheduler.start()
|
| 69 |
+
demo.queue(default_concurrency_limit=40).launch(server_name="0.0.0.0",
|
| 70 |
+
show_error=True,
|
| 71 |
+
server_port=7860)
|
main_backend_harness.py
CHANGED
|
@@ -6,7 +6,7 @@ from huggingface_hub import snapshot_download
|
|
| 6 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
| 7 |
|
| 8 |
from src.backend.run_eval_suite_harness import run_evaluation
|
| 9 |
-
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
| 10 |
from src.backend.sort_queue import sort_models_by_priority
|
| 11 |
|
| 12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT, TOKEN
|
|
@@ -19,10 +19,6 @@ from src.logging import setup_logger
|
|
| 19 |
logger = setup_logger(__name__)
|
| 20 |
pp = pprint.PrettyPrinter(width=80)
|
| 21 |
|
| 22 |
-
PENDING_STATUS = "PENDING"
|
| 23 |
-
RUNNING_STATUS = "RUNNING"
|
| 24 |
-
FINISHED_STATUS = "FINISHED"
|
| 25 |
-
FAILED_STATUS = "FAILED"
|
| 26 |
|
| 27 |
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
| 28 |
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
|
|
|
| 6 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
| 7 |
|
| 8 |
from src.backend.run_eval_suite_harness import run_evaluation
|
| 9 |
+
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request, PENDING_STATUS, RUNNING_STATUS, FINISHED_STATUS, FAILED_STATUS
|
| 10 |
from src.backend.sort_queue import sort_models_by_priority
|
| 11 |
|
| 12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT, TOKEN
|
|
|
|
| 19 |
logger = setup_logger(__name__)
|
| 20 |
pp = pprint.PrettyPrinter(width=80)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
| 24 |
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
main_backend_lighteval.py
CHANGED
|
@@ -6,7 +6,7 @@ from huggingface_hub import snapshot_download
|
|
| 6 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
| 7 |
|
| 8 |
from src.backend.run_eval_suite_lighteval import run_evaluation
|
| 9 |
-
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
| 10 |
from src.backend.sort_queue import sort_models_by_priority
|
| 11 |
|
| 12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, LIMIT, TOKEN, ACCELERATOR, VENDOR, REGION, TASKS_LIGHTEVAL
|
|
@@ -17,11 +17,6 @@ logger = setup_logger(__name__)
|
|
| 17 |
# logging.basicConfig(level=logging.ERROR)
|
| 18 |
pp = pprint.PrettyPrinter(width=80)
|
| 19 |
|
| 20 |
-
PENDING_STATUS = "PENDING"
|
| 21 |
-
RUNNING_STATUS = "RUNNING"
|
| 22 |
-
FINISHED_STATUS = "FINISHED"
|
| 23 |
-
FAILED_STATUS = "FAILED"
|
| 24 |
-
|
| 25 |
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
| 26 |
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
| 27 |
|
|
|
|
| 6 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
| 7 |
|
| 8 |
from src.backend.run_eval_suite_lighteval import run_evaluation
|
| 9 |
+
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request, PENDING_STATUS, RUNNING_STATUS, FINISHED_STATUS, FAILED_STATUS
|
| 10 |
from src.backend.sort_queue import sort_models_by_priority
|
| 11 |
|
| 12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, LIMIT, TOKEN, ACCELERATOR, VENDOR, REGION, TASKS_LIGHTEVAL
|
|
|
|
| 17 |
# logging.basicConfig(level=logging.ERROR)
|
| 18 |
pp = pprint.PrettyPrinter(width=80)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
| 21 |
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
| 22 |
|
src/backend/manage_requests.py
CHANGED
|
@@ -9,6 +9,11 @@ from src.logging import setup_logger
|
|
| 9 |
|
| 10 |
logger = setup_logger(__name__)
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
@dataclass
|
| 13 |
class EvalRequest:
|
| 14 |
"""This class represents one evaluation request file.
|
|
@@ -34,18 +39,10 @@ class EvalRequest:
|
|
| 34 |
"""
|
| 35 |
model_args = f"pretrained={self.model},revision={self.revision}"
|
| 36 |
|
| 37 |
-
if self.precision in ["float16", "bfloat16"
|
| 38 |
model_args += f",dtype={self.precision}"
|
| 39 |
|
| 40 |
# Quantized models need some added config, the install of bits and bytes, etc
|
| 41 |
-
|
| 42 |
-
#elif self.precision == "8bit":
|
| 43 |
-
# model_args += ",load_in_8bit=True"
|
| 44 |
-
#elif self.precision == "4bit":
|
| 45 |
-
# model_args += ",load_in_4bit=True"
|
| 46 |
-
#elif self.precision == "GPTQ":
|
| 47 |
-
# A GPTQ model does not need dtype to be specified,
|
| 48 |
-
# it will be inferred from the config
|
| 49 |
else:
|
| 50 |
raise Exception(f"Unknown precision {self.precision}.")
|
| 51 |
|
|
@@ -95,6 +92,16 @@ def get_eval_requests(job_status: list, local_dir: str, hf_repo: str) -> list[Ev
|
|
| 95 |
return eval_requests
|
| 96 |
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def check_completed_evals(
|
| 99 |
api: HfApi,
|
| 100 |
hf_repo: str,
|
|
@@ -106,7 +113,14 @@ def check_completed_evals(
|
|
| 106 |
local_dir_results: str,
|
| 107 |
):
|
| 108 |
"""Checks if the currently running evals are completed, if yes, update their status on the hub."""
|
| 109 |
-
snapshot_download(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
running_evals = get_eval_requests(checked_status, hf_repo=hf_repo, local_dir=local_dir)
|
| 112 |
|
|
@@ -125,7 +139,8 @@ def check_completed_evals(
|
|
| 125 |
)
|
| 126 |
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)
|
| 127 |
else:
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
| 9 |
|
| 10 |
logger = setup_logger(__name__)
|
| 11 |
|
| 12 |
+
PENDING_STATUS = "PENDING"
|
| 13 |
+
RUNNING_STATUS = "RUNNING"
|
| 14 |
+
FINISHED_STATUS = "FINISHED"
|
| 15 |
+
FAILED_STATUS = "FAILED"
|
| 16 |
+
|
| 17 |
@dataclass
|
| 18 |
class EvalRequest:
|
| 19 |
"""This class represents one evaluation request file.
|
|
|
|
| 39 |
"""
|
| 40 |
model_args = f"pretrained={self.model},revision={self.revision}"
|
| 41 |
|
| 42 |
+
if self.precision in ["float16", "bfloat16"]:
|
| 43 |
model_args += f",dtype={self.precision}"
|
| 44 |
|
| 45 |
# Quantized models need some added config, the install of bits and bytes, etc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
else:
|
| 47 |
raise Exception(f"Unknown precision {self.precision}.")
|
| 48 |
|
|
|
|
| 92 |
return eval_requests
|
| 93 |
|
| 94 |
|
| 95 |
+
def eval_was_running(eval_request: EvalRequest):
|
| 96 |
+
"""Checks whether a file says it's RUNNING to determine whether to FAIL"""
|
| 97 |
+
json_filepath = eval_request.json_filepath
|
| 98 |
+
|
| 99 |
+
with open(json_filepath) as fp:
|
| 100 |
+
data = json.load(fp)
|
| 101 |
+
|
| 102 |
+
status = data["status"]
|
| 103 |
+
return status == RUNNING_STATUS
|
| 104 |
+
|
| 105 |
def check_completed_evals(
|
| 106 |
api: HfApi,
|
| 107 |
hf_repo: str,
|
|
|
|
| 113 |
local_dir_results: str,
|
| 114 |
):
|
| 115 |
"""Checks if the currently running evals are completed, if yes, update their status on the hub."""
|
| 116 |
+
snapshot_download(
|
| 117 |
+
repo_id=hf_repo_results,
|
| 118 |
+
revision="main",
|
| 119 |
+
local_dir=local_dir_results,
|
| 120 |
+
repo_type="dataset",
|
| 121 |
+
max_workers=60,
|
| 122 |
+
token=TOKEN
|
| 123 |
+
)
|
| 124 |
|
| 125 |
running_evals = get_eval_requests(checked_status, hf_repo=hf_repo, local_dir=local_dir)
|
| 126 |
|
|
|
|
| 139 |
)
|
| 140 |
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)
|
| 141 |
else:
|
| 142 |
+
if eval_was_running(eval_request=eval_request):
|
| 143 |
+
logger.info(
|
| 144 |
+
f"No result file found for {model} setting it to {failed_status}"
|
| 145 |
+
)
|
| 146 |
+
set_eval_request(api, eval_request, failed_status, hf_repo, local_dir)
|