Spaces:
Runtime error
Runtime error
| import argparse | |
| import math | |
| import os | |
| import platform | |
| import cv2 | |
| import numpy as np | |
| import paddle | |
| from paddle import inference | |
| from PIL import Image, ImageDraw, ImageFont | |
| def str2bool(v): | |
| return v.lower() in ("true", "t", "1") | |
| def init_args(): | |
| parser = argparse.ArgumentParser() | |
| # params for prediction engine | |
| parser.add_argument("--use_gpu", type=str2bool, default=False) | |
| parser.add_argument("--use_xpu", type=str2bool, default=False) | |
| parser.add_argument("--ir_optim", type=str2bool, default=False) | |
| parser.add_argument("--use_tensorrt", type=str2bool, default=False) | |
| parser.add_argument("--min_subgraph_size", type=int, default=15) | |
| parser.add_argument("--precision", type=str, default="fp32") | |
| parser.add_argument("--gpu_mem", type=int, default=500) | |
| # params for text detector | |
| parser.add_argument("--image_dir", type=str) | |
| parser.add_argument("--det_algorithm", type=str, default="DB") | |
| parser.add_argument("--det_model_dir", type=str, default="./ocr/ch_PP-OCRv3_det_infer/") | |
| parser.add_argument("--det_limit_side_len", type=float, default=960) | |
| parser.add_argument("--det_limit_type", type=str, default="max") | |
| # DB parmas | |
| parser.add_argument("--det_db_thresh", type=float, default=0.1) | |
| parser.add_argument("--det_db_box_thresh", type=float, default=0.1) | |
| parser.add_argument("--det_db_unclip_ratio", type=float, default=1.7) | |
| parser.add_argument("--max_batch_size", type=int, default=10) | |
| parser.add_argument("--use_dilation", type=str2bool, default=True) | |
| parser.add_argument("--det_db_score_mode", type=str, default="fast") | |
| # EAST parmas | |
| parser.add_argument("--det_east_score_thresh", type=float, default=0.8) | |
| parser.add_argument("--det_east_cover_thresh", type=float, default=0.1) | |
| parser.add_argument("--det_east_nms_thresh", type=float, default=0.2) | |
| # SAST parmas | |
| parser.add_argument("--det_sast_score_thresh", type=float, default=0.5) | |
| parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2) | |
| parser.add_argument("--det_sast_polygon", type=str2bool, default=False) | |
| # PSE parmas | |
| parser.add_argument("--det_pse_thresh", type=float, default=0) | |
| parser.add_argument("--det_pse_box_thresh", type=float, default=0.85) | |
| parser.add_argument("--det_pse_min_area", type=float, default=16) | |
| parser.add_argument("--det_pse_box_type", type=str, default="quad") | |
| parser.add_argument("--det_pse_scale", type=int, default=1) | |
| # FCE parmas | |
| parser.add_argument("--scales", type=list, default=[8, 16, 32]) | |
| parser.add_argument("--alpha", type=float, default=1.0) | |
| parser.add_argument("--beta", type=float, default=1.0) | |
| parser.add_argument("--fourier_degree", type=int, default=5) | |
| parser.add_argument("--det_fce_box_type", type=str, default="poly") | |
| # params for text recognizer | |
| parser.add_argument("--rec_algorithm", type=str, default="SVTR_LCNet") | |
| parser.add_argument("--rec_model_dir", type=str, default="./ocr/ch_PP-OCRv3_rec_infer/") | |
| parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320") | |
| parser.add_argument("--rec_batch_num", type=int, default=6) | |
| parser.add_argument("--max_text_length", type=int, default=25) | |
| parser.add_argument( | |
| "--rec_char_dict_path", type=str, default="./ocr/ppocr/ppocr_keys_v1.txt" | |
| ) | |
| parser.add_argument("--use_space_char", type=str2bool, default=True) | |
| parser.add_argument("--drop_score", type=float, default=0.5) | |
| # params for text classifier | |
| parser.add_argument("--use_angle_cls", type=str2bool, default=False) | |
| parser.add_argument("--cls_model_dir", type=str) | |
| parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192") | |
| parser.add_argument("--label_list", type=list, default=["0", "180"]) | |
| parser.add_argument("--cls_batch_num", type=int, default=6) | |
| parser.add_argument("--cls_thresh", type=float, default=0.9) | |
| parser.add_argument("--enable_mkldnn", type=str2bool, default=True) | |
| parser.add_argument("--cpu_threads", type=int, default=10) | |
| parser.add_argument("--use_pdserving", type=str2bool, default=False) | |
| parser.add_argument("--warmup", type=str2bool, default=False) | |
| # | |
| parser.add_argument("--draw_img_save_dir", type=str, default="./inference_results") | |
| parser.add_argument("--save_crop_res", type=str2bool, default=False) | |
| parser.add_argument("--crop_res_save_dir", type=str, default="./output") | |
| # multi-process | |
| parser.add_argument("--use_mp", type=str2bool, default=False) | |
| parser.add_argument("--total_process_num", type=int, default=1) | |
| parser.add_argument("--process_id", type=int, default=0) | |
| parser.add_argument("--benchmark", type=str2bool, default=False) | |
| parser.add_argument("--save_log_path", type=str, default="./log_output/") | |
| parser.add_argument("--use_onnx", type=str2bool, default=False) | |
| return parser | |
| def parse_args(): | |
| parser = init_args() | |
| return parser.parse_args() | |
| def create_predictor(args, mode): | |
| if mode == "det": | |
| model_dir = args.det_model_dir | |
| elif mode == "rec": | |
| model_dir = args.rec_model_dir | |
| if args.use_onnx: | |
| import onnxruntime as ort | |
| model_file_path = model_dir | |
| if not os.path.exists(model_file_path): | |
| raise ValueError("not find model file path {}".format(model_file_path)) | |
| sess = ort.InferenceSession(model_file_path) | |
| return sess, sess.get_inputs()[0], None, None | |
| else: | |
| model_file_path = model_dir + "/inference.pdmodel" | |
| params_file_path = model_dir + "/inference.pdiparams" | |
| if not os.path.exists(model_file_path): | |
| raise ValueError("not find model file path {}".format(model_file_path)) | |
| if not os.path.exists(params_file_path): | |
| raise ValueError("not find params file path {}".format(params_file_path)) | |
| config = inference.Config(model_file_path, params_file_path) | |
| if hasattr(args, "precision"): | |
| if args.precision == "fp16" and args.use_tensorrt: | |
| precision = inference.PrecisionType.Half | |
| elif args.precision == "int8": | |
| precision = inference.PrecisionType.Int8 | |
| else: | |
| precision = inference.PrecisionType.Float32 | |
| else: | |
| precision = inference.PrecisionType.Float32 | |
| if args.use_gpu: | |
| gpu_id = get_infer_gpuid() | |
| config.enable_use_gpu(args.gpu_mem, 0) | |
| if args.use_tensorrt: | |
| config.enable_tensorrt_engine( | |
| workspace_size=1 << 30, | |
| precision_mode=precision, | |
| max_batch_size=args.max_batch_size, | |
| min_subgraph_size=args.min_subgraph_size, | |
| ) | |
| # skip the minmum trt subgraph | |
| use_dynamic_shape = True | |
| if mode == "det": | |
| min_input_shape = { | |
| "x": [1, 3, 50, 50], | |
| "conv2d_92.tmp_0": [1, 120, 20, 20], | |
| "conv2d_91.tmp_0": [1, 24, 10, 10], | |
| "conv2d_59.tmp_0": [1, 96, 20, 20], | |
| "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10], | |
| "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20], | |
| "conv2d_124.tmp_0": [1, 256, 20, 20], | |
| "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20], | |
| "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20], | |
| "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20], | |
| "elementwise_add_7": [1, 56, 2, 2], | |
| "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2], | |
| } | |
| max_input_shape = { | |
| "x": [1, 3, 1536, 1536], | |
| "conv2d_92.tmp_0": [1, 120, 400, 400], | |
| "conv2d_91.tmp_0": [1, 24, 200, 200], | |
| "conv2d_59.tmp_0": [1, 96, 400, 400], | |
| "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200], | |
| "conv2d_124.tmp_0": [1, 256, 400, 400], | |
| "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400], | |
| "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400], | |
| "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400], | |
| "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400], | |
| "elementwise_add_7": [1, 56, 400, 400], | |
| "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400], | |
| } | |
| opt_input_shape = { | |
| "x": [1, 3, 640, 640], | |
| "conv2d_92.tmp_0": [1, 120, 160, 160], | |
| "conv2d_91.tmp_0": [1, 24, 80, 80], | |
| "conv2d_59.tmp_0": [1, 96, 160, 160], | |
| "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80], | |
| "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160], | |
| "conv2d_124.tmp_0": [1, 256, 160, 160], | |
| "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160], | |
| "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160], | |
| "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160], | |
| "elementwise_add_7": [1, 56, 40, 40], | |
| "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40], | |
| } | |
| min_pact_shape = { | |
| "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20], | |
| "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20], | |
| "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20], | |
| "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20], | |
| } | |
| max_pact_shape = { | |
| "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400], | |
| "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400], | |
| "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400], | |
| "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400], | |
| } | |
| opt_pact_shape = { | |
| "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160], | |
| "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160], | |
| "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160], | |
| "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160], | |
| } | |
| min_input_shape.update(min_pact_shape) | |
| max_input_shape.update(max_pact_shape) | |
| opt_input_shape.update(opt_pact_shape) | |
| elif mode == "rec": | |
| if args.rec_algorithm not in ["CRNN", "SVTR_LCNet"]: | |
| use_dynamic_shape = False | |
| imgH = int(args.rec_image_shape.split(",")[-2]) | |
| min_input_shape = {"x": [1, 3, imgH, 10]} | |
| max_input_shape = {"x": [args.rec_batch_num, 3, imgH, 2304]} | |
| opt_input_shape = {"x": [args.rec_batch_num, 3, imgH, 320]} | |
| config.exp_disable_tensorrt_ops(["transpose2"]) | |
| elif mode == "cls": | |
| min_input_shape = {"x": [1, 3, 48, 10]} | |
| max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]} | |
| opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]} | |
| else: | |
| use_dynamic_shape = False | |
| if use_dynamic_shape: | |
| config.set_trt_dynamic_shape_info( | |
| min_input_shape, max_input_shape, opt_input_shape | |
| ) | |
| elif args.use_xpu: | |
| config.enable_xpu(10 * 1024 * 1024) | |
| else: | |
| config.disable_gpu() | |
| if hasattr(args, "cpu_threads"): | |
| config.set_cpu_math_library_num_threads(args.cpu_threads) | |
| else: | |
| # default cpu threads as 10 | |
| config.set_cpu_math_library_num_threads(10) | |
| if args.enable_mkldnn: | |
| # cache 10 different shapes for mkldnn to avoid memory leak | |
| config.set_mkldnn_cache_capacity(10) | |
| config.enable_mkldnn() | |
| if args.precision == "fp16": | |
| config.enable_mkldnn_bfloat16() | |
| # enable memory optim | |
| config.enable_memory_optim() | |
| config.disable_glog_info() | |
| config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") | |
| config.delete_pass("matmul_transpose_reshape_fuse_pass") | |
| if mode == "table": | |
| config.delete_pass("fc_fuse_pass") # not supported for table | |
| config.switch_use_feed_fetch_ops(False) | |
| config.switch_ir_optim(True) | |
| # create predictor | |
| predictor = inference.create_predictor(config) | |
| input_names = predictor.get_input_names() | |
| for name in input_names: | |
| input_tensor = predictor.get_input_handle(name) | |
| output_tensors = get_output_tensors(args, mode, predictor) | |
| return predictor, input_tensor, output_tensors, config | |
| def get_output_tensors(args, mode, predictor): | |
| output_names = predictor.get_output_names() | |
| output_tensors = [] | |
| if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]: | |
| output_name = "softmax_0.tmp_0" | |
| if output_name in output_names: | |
| return [predictor.get_output_handle(output_name)] | |
| else: | |
| for output_name in output_names: | |
| output_tensor = predictor.get_output_handle(output_name) | |
| output_tensors.append(output_tensor) | |
| else: | |
| for output_name in output_names: | |
| output_tensor = predictor.get_output_handle(output_name) | |
| output_tensors.append(output_tensor) | |
| return output_tensors | |
| def get_infer_gpuid(): | |
| sysstr = platform.system() | |
| if sysstr == "Windows": | |
| return 0 | |
| if not paddle.fluid.core.is_compiled_with_rocm(): | |
| cmd = "env | grep CUDA_VISIBLE_DEVICES" | |
| else: | |
| cmd = "env | grep HIP_VISIBLE_DEVICES" | |
| env_cuda = os.popen(cmd).readlines() | |
| if len(env_cuda) == 0: | |
| return 0 | |
| else: | |
| gpu_id = env_cuda[0].strip().split("=")[1] | |
| return int(gpu_id[0]) | |
| def draw_e2e_res(dt_boxes, strs, img_path): | |
| src_im = cv2.imread(img_path) | |
| for box, str in zip(dt_boxes, strs): | |
| box = box.astype(np.int32).reshape((-1, 1, 2)) | |
| cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) | |
| cv2.putText( | |
| src_im, | |
| str, | |
| org=(int(box[0, 0, 0]), int(box[0, 0, 1])), | |
| fontFace=cv2.FONT_HERSHEY_COMPLEX, | |
| fontScale=0.7, | |
| color=(0, 255, 0), | |
| thickness=1, | |
| ) | |
| return src_im | |
| def draw_text_det_res(dt_boxes, img_path): | |
| src_im = cv2.imread(img_path) | |
| for box in dt_boxes: | |
| box = np.array(box).astype(np.int32).reshape(-1, 2) | |
| cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) | |
| return src_im | |
| def resize_img(img, input_size=600): | |
| """ | |
| resize img and limit the longest side of the image to input_size | |
| """ | |
| img = np.array(img) | |
| im_shape = img.shape | |
| im_size_max = np.max(im_shape[0:2]) | |
| im_scale = float(input_size) / float(im_size_max) | |
| img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) | |
| return img | |
| def draw_ocr( | |
| image, | |
| boxes, | |
| txts=None, | |
| scores=None, | |
| drop_score=0.5, | |
| font_path="./doc/fonts/simfang.ttf", | |
| ): | |
| """ | |
| Visualize the results of OCR detection and recognition | |
| args: | |
| image(Image|array): RGB image | |
| boxes(list): boxes with shape(N, 4, 2) | |
| txts(list): the texts | |
| scores(list): txxs corresponding scores | |
| drop_score(float): only scores greater than drop_threshold will be visualized | |
| font_path: the path of font which is used to draw text | |
| return(array): | |
| the visualized img | |
| """ | |
| if scores is None: | |
| scores = [1] * len(boxes) | |
| box_num = len(boxes) | |
| for i in range(box_num): | |
| if scores is not None and (scores[i] < drop_score or math.isnan(scores[i])): | |
| continue | |
| box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64) | |
| image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) | |
| if txts is not None: | |
| img = np.array(resize_img(image, input_size=600)) | |
| txt_img = text_visual( | |
| txts, | |
| scores, | |
| img_h=img.shape[0], | |
| img_w=600, | |
| threshold=drop_score, | |
| font_path=font_path, | |
| ) | |
| img = np.concatenate([np.array(img), np.array(txt_img)], axis=1) | |
| return img | |
| return image | |
| def draw_ocr_box_txt( | |
| image, boxes, txts, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf" | |
| ): | |
| h, w = image.height, image.width | |
| img_left = image.copy() | |
| img_right = Image.new("RGB", (w, h), (255, 255, 255)) | |
| import random | |
| random.seed(0) | |
| draw_left = ImageDraw.Draw(img_left) | |
| draw_right = ImageDraw.Draw(img_right) | |
| for idx, (box, txt) in enumerate(zip(boxes, txts)): | |
| if scores is not None and scores[idx] < drop_score: | |
| continue | |
| color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) | |
| draw_left.polygon(box, fill=color) | |
| draw_right.polygon( | |
| [ | |
| box[0][0], | |
| box[0][1], | |
| box[1][0], | |
| box[1][1], | |
| box[2][0], | |
| box[2][1], | |
| box[3][0], | |
| box[3][1], | |
| ], | |
| outline=color, | |
| ) | |
| box_height = math.sqrt( | |
| (box[0][0] - box[3][0]) ** 2 + (box[0][1] - box[3][1]) ** 2 | |
| ) | |
| box_width = math.sqrt( | |
| (box[0][0] - box[1][0]) ** 2 + (box[0][1] - box[1][1]) ** 2 | |
| ) | |
| if box_height > 2 * box_width: | |
| font_size = max(int(box_width * 0.9), 10) | |
| font = ImageFont.truetype(font_path, font_size, encoding="utf-8") | |
| cur_y = box[0][1] | |
| for c in txt: | |
| char_size = font.getsize(c) | |
| draw_right.text((box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font) | |
| cur_y += char_size[1] | |
| else: | |
| font_size = max(int(box_height * 0.8), 10) | |
| font = ImageFont.truetype(font_path, font_size, encoding="utf-8") | |
| draw_right.text([box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font) | |
| img_left = Image.blend(image, img_left, 0.5) | |
| img_show = Image.new("RGB", (w * 2, h), (255, 255, 255)) | |
| img_show.paste(img_left, (0, 0, w, h)) | |
| img_show.paste(img_right, (w, 0, w * 2, h)) | |
| return np.array(img_show) | |
| def str_count(s): | |
| """ | |
| Count the number of Chinese characters, | |
| a single English character and a single number | |
| equal to half the length of Chinese characters. | |
| args: | |
| s(string): the input of string | |
| return(int): | |
| the number of Chinese characters | |
| """ | |
| import string | |
| count_zh = count_pu = 0 | |
| s_len = len(s) | |
| en_dg_count = 0 | |
| for c in s: | |
| if c in string.ascii_letters or c.isdigit() or c.isspace(): | |
| en_dg_count += 1 | |
| elif c.isalpha(): | |
| count_zh += 1 | |
| else: | |
| count_pu += 1 | |
| return s_len - math.ceil(en_dg_count / 2) | |
| def text_visual( | |
| texts, scores, img_h=400, img_w=600, threshold=0.0, font_path="./doc/simfang.ttf" | |
| ): | |
| """ | |
| create new blank img and draw txt on it | |
| args: | |
| texts(list): the text will be draw | |
| scores(list|None): corresponding score of each txt | |
| img_h(int): the height of blank img | |
| img_w(int): the width of blank img | |
| font_path: the path of font which is used to draw text | |
| return(array): | |
| """ | |
| if scores is not None: | |
| assert len(texts) == len( | |
| scores | |
| ), "The number of txts and corresponding scores must match" | |
| def create_blank_img(): | |
| blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255 | |
| blank_img[:, img_w - 1 :] = 0 | |
| blank_img = Image.fromarray(blank_img).convert("RGB") | |
| draw_txt = ImageDraw.Draw(blank_img) | |
| return blank_img, draw_txt | |
| blank_img, draw_txt = create_blank_img() | |
| font_size = 20 | |
| txt_color = (0, 0, 0) | |
| font = ImageFont.truetype(font_path, font_size, encoding="utf-8") | |
| gap = font_size + 5 | |
| txt_img_list = [] | |
| count, index = 1, 0 | |
| for idx, txt in enumerate(texts): | |
| index += 1 | |
| if scores[idx] < threshold or math.isnan(scores[idx]): | |
| index -= 1 | |
| continue | |
| first_line = True | |
| while str_count(txt) >= img_w // font_size - 4: | |
| tmp = txt | |
| txt = tmp[: img_w // font_size - 4] | |
| if first_line: | |
| new_txt = str(index) + ": " + txt | |
| first_line = False | |
| else: | |
| new_txt = " " + txt | |
| draw_txt.text((0, gap * count), new_txt, txt_color, font=font) | |
| txt = tmp[img_w // font_size - 4 :] | |
| if count >= img_h // gap - 1: | |
| txt_img_list.append(np.array(blank_img)) | |
| blank_img, draw_txt = create_blank_img() | |
| count = 0 | |
| count += 1 | |
| if first_line: | |
| new_txt = str(index) + ": " + txt + " " + "%.3f" % (scores[idx]) | |
| else: | |
| new_txt = " " + txt + " " + "%.3f" % (scores[idx]) | |
| draw_txt.text((0, gap * count), new_txt, txt_color, font=font) | |
| # whether add new blank img or not | |
| if count >= img_h // gap - 1 and idx + 1 < len(texts): | |
| txt_img_list.append(np.array(blank_img)) | |
| blank_img, draw_txt = create_blank_img() | |
| count = 0 | |
| count += 1 | |
| txt_img_list.append(np.array(blank_img)) | |
| if len(txt_img_list) == 1: | |
| blank_img = np.array(txt_img_list[0]) | |
| else: | |
| blank_img = np.concatenate(txt_img_list, axis=1) | |
| return np.array(blank_img) | |
| def base64_to_cv2(b64str): | |
| import base64 | |
| data = base64.b64decode(b64str.encode("utf8")) | |
| data = np.frombuffer(data, np.uint8) | |
| data = cv2.imdecode(data, cv2.IMREAD_COLOR) | |
| return data | |
| def draw_boxes(image, boxes, scores=None, drop_score=0.5): | |
| if scores is None: | |
| scores = [1] * len(boxes) | |
| for (box, score) in zip(boxes, scores): | |
| if score < drop_score: | |
| continue | |
| box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) | |
| image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) | |
| return image | |
| def get_rotate_crop_image(img, points): | |
| """ | |
| img_height, img_width = img.shape[0:2] | |
| left = int(np.min(points[:, 0])) | |
| right = int(np.max(points[:, 0])) | |
| top = int(np.min(points[:, 1])) | |
| bottom = int(np.max(points[:, 1])) | |
| img_crop = img[top:bottom, left:right, :].copy() | |
| points[:, 0] = points[:, 0] - left | |
| points[:, 1] = points[:, 1] - top | |
| """ | |
| assert len(points) == 4, "shape of points must be 4*2" | |
| img_crop_width = int( | |
| max( | |
| np.linalg.norm(points[0] - points[1]), np.linalg.norm(points[2] - points[3]) | |
| ) | |
| ) | |
| img_crop_height = int( | |
| max( | |
| np.linalg.norm(points[0] - points[3]), np.linalg.norm(points[1] - points[2]) | |
| ) | |
| ) | |
| pts_std = np.float32( | |
| [ | |
| [0, 0], | |
| [img_crop_width, 0], | |
| [img_crop_width, img_crop_height], | |
| [0, img_crop_height], | |
| ] | |
| ) | |
| M = cv2.getPerspectiveTransform(points, pts_std) | |
| dst_img = cv2.warpPerspective( | |
| img, | |
| M, | |
| (img_crop_width, img_crop_height), | |
| borderMode=cv2.BORDER_REPLICATE, | |
| flags=cv2.INTER_CUBIC, | |
| ) | |
| dst_img_height, dst_img_width = dst_img.shape[0:2] | |
| if dst_img_height * 1.0 / dst_img_width >= 1.5: | |
| dst_img = np.rot90(dst_img) | |
| return dst_img | |
| def check_gpu(use_gpu): | |
| if use_gpu and not paddle.is_compiled_with_cuda(): | |
| use_gpu = False | |
| return use_gpu | |