Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import random | |
| import traceback | |
| import numpy as np | |
| from paddle.io import Dataset | |
| from .imaug import create_operators, transform | |
| class SimpleDataSet(Dataset): | |
| def __init__(self, config, mode, logger, seed=None): | |
| super(SimpleDataSet, self).__init__() | |
| self.logger = logger | |
| self.mode = mode.lower() | |
| global_config = config["Global"] | |
| dataset_config = config[mode]["dataset"] | |
| loader_config = config[mode]["loader"] | |
| self.delimiter = dataset_config.get("delimiter", "\t") | |
| label_file_list = dataset_config.pop("label_file_list") | |
| data_source_num = len(label_file_list) | |
| ratio_list = dataset_config.get("ratio_list", 1.0) | |
| if isinstance(ratio_list, (float, int)): | |
| ratio_list = [float(ratio_list)] * int(data_source_num) | |
| assert ( | |
| len(ratio_list) == data_source_num | |
| ), "The length of ratio_list should be the same as the file_list." | |
| self.data_dir = dataset_config["data_dir"] | |
| self.do_shuffle = loader_config["shuffle"] | |
| self.seed = seed | |
| logger.info("Initialize indexs of datasets:%s" % label_file_list) | |
| self.data_lines = self.get_image_info_list(label_file_list, ratio_list) | |
| self.data_idx_order_list = list(range(len(self.data_lines))) | |
| if self.mode == "train" and self.do_shuffle: | |
| self.shuffle_data_random() | |
| self.ops = create_operators(dataset_config["transforms"], global_config) | |
| self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx", 2) | |
| self.need_reset = True in [x < 1 for x in ratio_list] | |
| def get_image_info_list(self, file_list, ratio_list): | |
| if isinstance(file_list, str): | |
| file_list = [file_list] | |
| data_lines = [] | |
| for idx, file in enumerate(file_list): | |
| with open(file, "rb") as f: | |
| lines = f.readlines() | |
| if self.mode == "train" or ratio_list[idx] < 1.0: | |
| random.seed(self.seed) | |
| lines = random.sample(lines, round(len(lines) * ratio_list[idx])) | |
| data_lines.extend(lines) | |
| return data_lines | |
| def shuffle_data_random(self): | |
| random.seed(self.seed) | |
| random.shuffle(self.data_lines) | |
| return | |
| def _try_parse_filename_list(self, file_name): | |
| # multiple images -> one gt label | |
| if len(file_name) > 0 and file_name[0] == "[": | |
| try: | |
| info = json.loads(file_name) | |
| file_name = random.choice(info) | |
| except: | |
| pass | |
| return file_name | |
| def get_ext_data(self): | |
| ext_data_num = 0 | |
| for op in self.ops: | |
| if hasattr(op, "ext_data_num"): | |
| ext_data_num = getattr(op, "ext_data_num") | |
| break | |
| load_data_ops = self.ops[: self.ext_op_transform_idx] | |
| ext_data = [] | |
| while len(ext_data) < ext_data_num: | |
| file_idx = self.data_idx_order_list[np.random.randint(self.__len__())] | |
| data_line = self.data_lines[file_idx] | |
| data_line = data_line.decode("utf-8") | |
| substr = data_line.strip("\n").split(self.delimiter) | |
| file_name = substr[0] | |
| file_name = self._try_parse_filename_list(file_name) | |
| label = substr[1] | |
| img_path = os.path.join(self.data_dir, file_name) | |
| data = {"img_path": img_path, "label": label} | |
| if not os.path.exists(img_path): | |
| continue | |
| with open(data["img_path"], "rb") as f: | |
| img = f.read() | |
| data["image"] = img | |
| data = transform(data, load_data_ops) | |
| if data is None: | |
| continue | |
| if "polys" in data.keys(): | |
| if data["polys"].shape[1] != 4: | |
| continue | |
| ext_data.append(data) | |
| return ext_data | |
| def __getitem__(self, idx): | |
| file_idx = self.data_idx_order_list[idx] | |
| data_line = self.data_lines[file_idx] | |
| try: | |
| data_line = data_line.decode("utf-8") | |
| substr = data_line.strip("\n").split(self.delimiter) | |
| file_name = substr[0] | |
| file_name = self._try_parse_filename_list(file_name) | |
| label = substr[1] | |
| img_path = os.path.join(self.data_dir, file_name) | |
| data = {"img_path": img_path, "label": label} | |
| if not os.path.exists(img_path): | |
| raise Exception("{} does not exist!".format(img_path)) | |
| with open(data["img_path"], "rb") as f: | |
| img = f.read() | |
| data["image"] = img | |
| data["ext_data"] = self.get_ext_data() | |
| outs = transform(data, self.ops) | |
| except: | |
| self.logger.error( | |
| "When parsing line {}, error happened with msg: {}".format( | |
| data_line, traceback.format_exc() | |
| ) | |
| ) | |
| outs = None | |
| if outs is None: | |
| # during evaluation, we should fix the idx to get same results for many times of evaluation. | |
| rnd_idx = ( | |
| np.random.randint(self.__len__()) | |
| if self.mode == "train" | |
| else (idx + 1) % self.__len__() | |
| ) | |
| return self.__getitem__(rnd_idx) | |
| return outs | |
| def __len__(self): | |
| return len(self.data_idx_order_list) | |