Spaces:
Paused
Paused
Derek Thomas
commited on
Commit
·
5b7578c
1
Parent(s):
75b3ab4
Added vector db
Browse files- notebooks/04_vector_db.ipynb +241 -0
- requirements.txt +1 -0
notebooks/04_vector_db.ipynb
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "6a151ade-7d86-4a2e-bfe7-462089f4e04c",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Approach\n",
|
| 9 |
+
"There are a number of aspects of choosing a vector db that might be unique to your situation. You should think through your HW, utilization, latency requirements, scale, etc before choosing. \n",
|
| 10 |
+
"\n",
|
| 11 |
+
"Im targeting a demo (low utilization, latency can be relaxed) that will live on a huggingface space. I have a small scale that could even fit in memory. I like [Qdrant](https://qdrant.tech) for this. "
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "markdown",
|
| 16 |
+
"id": "b1b28232-b65d-41ce-88de-fd70b93a528d",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"source": [
|
| 19 |
+
"# Imports"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "code",
|
| 24 |
+
"execution_count": 1,
|
| 25 |
+
"id": "88408486-566a-4791-8ef2-5ee3e6941156",
|
| 26 |
+
"metadata": {
|
| 27 |
+
"tags": []
|
| 28 |
+
},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"from IPython.core.interactiveshell import InteractiveShell\n",
|
| 32 |
+
"InteractiveShell.ast_node_interactivity = 'all'"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": 2,
|
| 38 |
+
"id": "abb5186b-ee67-4e1e-882d-3d8d5b4575d4",
|
| 39 |
+
"metadata": {
|
| 40 |
+
"tags": []
|
| 41 |
+
},
|
| 42 |
+
"outputs": [],
|
| 43 |
+
"source": [
|
| 44 |
+
"from pathlib import Path\n",
|
| 45 |
+
"import pickle\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"from tqdm.notebook import tqdm\n",
|
| 48 |
+
"from haystack.schema import Document\n",
|
| 49 |
+
"from qdrant_haystack import QdrantDocumentStore"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": 3,
|
| 55 |
+
"id": "c4b82ea2-8b30-4c2e-99f0-9a30f2f1bfb7",
|
| 56 |
+
"metadata": {
|
| 57 |
+
"tags": []
|
| 58 |
+
},
|
| 59 |
+
"outputs": [
|
| 60 |
+
{
|
| 61 |
+
"name": "stdout",
|
| 62 |
+
"output_type": "stream",
|
| 63 |
+
"text": [
|
| 64 |
+
"/home/ec2-user/RAGDemo\n"
|
| 65 |
+
]
|
| 66 |
+
}
|
| 67 |
+
],
|
| 68 |
+
"source": [
|
| 69 |
+
"proj_dir = Path.cwd().parent\n",
|
| 70 |
+
"print(proj_dir)"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "markdown",
|
| 75 |
+
"id": "76119e74-f601-436d-a253-63c5a19d1c83",
|
| 76 |
+
"metadata": {},
|
| 77 |
+
"source": [
|
| 78 |
+
"# Config"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": 4,
|
| 84 |
+
"id": "f6f74545-54a7-4f41-9f02-96964e1417f0",
|
| 85 |
+
"metadata": {
|
| 86 |
+
"tags": []
|
| 87 |
+
},
|
| 88 |
+
"outputs": [],
|
| 89 |
+
"source": [
|
| 90 |
+
"file_in = proj_dir / 'data/processed/simple_wiki_embeddings.pkl'"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "markdown",
|
| 95 |
+
"id": "d2dd0df0-4274-45b3-9ee5-0205494e4d75",
|
| 96 |
+
"metadata": {
|
| 97 |
+
"tags": []
|
| 98 |
+
},
|
| 99 |
+
"source": [
|
| 100 |
+
"# Setup\n",
|
| 101 |
+
"Read in our list of dictionaries. This is the upper end for the machine Im using. This takes ~10GB of RAM. We could easily do this in batches of ~100k and be fine in most machines. "
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "code",
|
| 106 |
+
"execution_count": 5,
|
| 107 |
+
"id": "3c08e039-3686-4eca-9f87-7c469e3f19bc",
|
| 108 |
+
"metadata": {
|
| 109 |
+
"tags": []
|
| 110 |
+
},
|
| 111 |
+
"outputs": [
|
| 112 |
+
{
|
| 113 |
+
"name": "stdout",
|
| 114 |
+
"output_type": "stream",
|
| 115 |
+
"text": [
|
| 116 |
+
"CPU times: user 11.6 s, sys: 2.25 s, total: 13.9 s\n",
|
| 117 |
+
"Wall time: 18.1 s\n"
|
| 118 |
+
]
|
| 119 |
+
}
|
| 120 |
+
],
|
| 121 |
+
"source": [
|
| 122 |
+
"%%time\n",
|
| 123 |
+
"with open(file_in, 'rb') as handle:\n",
|
| 124 |
+
" documents = pickle.load(handle)"
|
| 125 |
+
]
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"cell_type": "markdown",
|
| 129 |
+
"id": "98aec715-8d97-439e-99c0-0eff63df386b",
|
| 130 |
+
"metadata": {},
|
| 131 |
+
"source": [
|
| 132 |
+
"Convert the dictionaries to `Documents`"
|
| 133 |
+
]
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
"cell_type": "code",
|
| 137 |
+
"execution_count": 6,
|
| 138 |
+
"id": "4821e3c1-697d-4b69-bae3-300168755df9",
|
| 139 |
+
"metadata": {
|
| 140 |
+
"tags": []
|
| 141 |
+
},
|
| 142 |
+
"outputs": [],
|
| 143 |
+
"source": [
|
| 144 |
+
"documents = [Document.from_dict(d) for d in documents]"
|
| 145 |
+
]
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"cell_type": "markdown",
|
| 149 |
+
"id": "676f644c-fb09-4d17-89ba-30c92aad8777",
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"source": [
|
| 152 |
+
"Instantiate our `DocumentStore`. Note that Im saving this to disk, this is for portability which is good considering I want to move from this ec2 instance into a Hugging Face Space. \n",
|
| 153 |
+
"\n",
|
| 154 |
+
"Note that if you are doing this at scale, you should use a proper instance and not saving to file. You should also take a [measured ingestion](https://qdrant.tech/documentation/tutorials/bulk-upload/) approach instead of using a convenient loader. "
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "code",
|
| 159 |
+
"execution_count": 7,
|
| 160 |
+
"id": "e51b6e19-3be8-4cb0-8b65-9d6f6121f660",
|
| 161 |
+
"metadata": {
|
| 162 |
+
"tags": []
|
| 163 |
+
},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"document_store = QdrantDocumentStore(\n",
|
| 167 |
+
" path=str(proj_dir/'Qdrant'),\n",
|
| 168 |
+
" index=\"RAGDemo\",\n",
|
| 169 |
+
" embedding_dim=768,\n",
|
| 170 |
+
" recreate_index=True,\n",
|
| 171 |
+
" hnsw_config={\"m\": 16, \"ef_construct\": 64} # Optional\n",
|
| 172 |
+
")"
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"cell_type": "code",
|
| 177 |
+
"execution_count": 9,
|
| 178 |
+
"id": "55fbcd5d-922c-4e93-a37a-974ba84464ac",
|
| 179 |
+
"metadata": {
|
| 180 |
+
"tags": []
|
| 181 |
+
},
|
| 182 |
+
"outputs": [
|
| 183 |
+
{
|
| 184 |
+
"name": "stderr",
|
| 185 |
+
"output_type": "stream",
|
| 186 |
+
"text": [
|
| 187 |
+
"270000it [28:43, 156.68it/s] "
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"name": "stdout",
|
| 192 |
+
"output_type": "stream",
|
| 193 |
+
"text": [
|
| 194 |
+
"CPU times: user 13min 23s, sys: 48.6 s, total: 14min 12s\n",
|
| 195 |
+
"Wall time: 28min 43s\n"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"name": "stderr",
|
| 200 |
+
"output_type": "stream",
|
| 201 |
+
"text": [
|
| 202 |
+
"\n"
|
| 203 |
+
]
|
| 204 |
+
}
|
| 205 |
+
],
|
| 206 |
+
"source": [
|
| 207 |
+
"%%time\n",
|
| 208 |
+
"document_store.write_documents(documents, batch_size=5_000)"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": null,
|
| 214 |
+
"id": "9a073815-0191-48f7-890f-a4e4ecc0f9f1",
|
| 215 |
+
"metadata": {},
|
| 216 |
+
"outputs": [],
|
| 217 |
+
"source": []
|
| 218 |
+
}
|
| 219 |
+
],
|
| 220 |
+
"metadata": {
|
| 221 |
+
"kernelspec": {
|
| 222 |
+
"display_name": "Python 3 (ipykernel)",
|
| 223 |
+
"language": "python",
|
| 224 |
+
"name": "python3"
|
| 225 |
+
},
|
| 226 |
+
"language_info": {
|
| 227 |
+
"codemirror_mode": {
|
| 228 |
+
"name": "ipython",
|
| 229 |
+
"version": 3
|
| 230 |
+
},
|
| 231 |
+
"file_extension": ".py",
|
| 232 |
+
"mimetype": "text/x-python",
|
| 233 |
+
"name": "python",
|
| 234 |
+
"nbconvert_exporter": "python",
|
| 235 |
+
"pygments_lexer": "ipython3",
|
| 236 |
+
"version": "3.10.9"
|
| 237 |
+
}
|
| 238 |
+
},
|
| 239 |
+
"nbformat": 4,
|
| 240 |
+
"nbformat_minor": 5
|
| 241 |
+
}
|
requirements.txt
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
wikiextractor==3.0.6
|
| 2 |
farm-haystack[inference]==1.20.1
|
|
|
|
| 3 |
ipywidgets==8.1.1
|
| 4 |
tqdm==4.66.1
|
| 5 |
aiohttp-3.8.6
|
|
|
|
| 1 |
wikiextractor==3.0.6
|
| 2 |
farm-haystack[inference]==1.20.1
|
| 3 |
+
qdrant-haystack==1.0.11
|
| 4 |
ipywidgets==8.1.1
|
| 5 |
tqdm==4.66.1
|
| 6 |
aiohttp-3.8.6
|