Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	
		Derek Thomas
		
	commited on
		
		
					Commit 
							
							ยท
						
						c94e693
	
1
								Parent(s):
							
							6115cdf
								
Adding updated notebooks
Browse files- notebooks/02_token_analysis.ipynb +0 -0
- notebooks/03_preprocessing.ipynb +825 -0
- notebooks/04_get_embeddings.ipynb +926 -0
- notebooks/05_vector_db.ipynb +904 -0
    	
        notebooks/02_token_analysis.ipynb
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        notebooks/03_preprocessing.ipynb
    ADDED
    
    | @@ -0,0 +1,825 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
             "cells": [
         | 
| 3 | 
            +
              {
         | 
| 4 | 
            +
               "cell_type": "markdown",
         | 
| 5 | 
            +
               "id": "b1b28232-b65d-41ce-88de-fd70b93a528d",
         | 
| 6 | 
            +
               "metadata": {},
         | 
| 7 | 
            +
               "source": [
         | 
| 8 | 
            +
                "# Imports"
         | 
| 9 | 
            +
               ]
         | 
| 10 | 
            +
              },
         | 
| 11 | 
            +
              {
         | 
| 12 | 
            +
               "cell_type": "code",
         | 
| 13 | 
            +
               "execution_count": 1,
         | 
| 14 | 
            +
               "id": "abb5186b-ee67-4e1e-882d-3d8d5b4575d4",
         | 
| 15 | 
            +
               "metadata": {
         | 
| 16 | 
            +
                "tags": []
         | 
| 17 | 
            +
               },
         | 
| 18 | 
            +
               "outputs": [],
         | 
| 19 | 
            +
               "source": [
         | 
| 20 | 
            +
                "import json\n",
         | 
| 21 | 
            +
                "from pathlib import Path\n",
         | 
| 22 | 
            +
                "import pickle\n",
         | 
| 23 | 
            +
                "from tqdm.auto import tqdm\n",
         | 
| 24 | 
            +
                "\n",
         | 
| 25 | 
            +
                "from haystack.nodes.preprocessor import PreProcessor"
         | 
| 26 | 
            +
               ]
         | 
| 27 | 
            +
              },
         | 
| 28 | 
            +
              {
         | 
| 29 | 
            +
               "cell_type": "code",
         | 
| 30 | 
            +
               "execution_count": 2,
         | 
| 31 | 
            +
               "id": "c4b82ea2-8b30-4c2e-99f0-9a30f2f1bfb7",
         | 
| 32 | 
            +
               "metadata": {
         | 
| 33 | 
            +
                "tags": []
         | 
| 34 | 
            +
               },
         | 
| 35 | 
            +
               "outputs": [
         | 
| 36 | 
            +
                {
         | 
| 37 | 
            +
                 "name": "stdout",
         | 
| 38 | 
            +
                 "output_type": "stream",
         | 
| 39 | 
            +
                 "text": [
         | 
| 40 | 
            +
                  "/home/ec2-user/arabic-wiki\n"
         | 
| 41 | 
            +
                 ]
         | 
| 42 | 
            +
                }
         | 
| 43 | 
            +
               ],
         | 
| 44 | 
            +
               "source": [
         | 
| 45 | 
            +
                "proj_dir = Path.cwd().parent\n",
         | 
| 46 | 
            +
                "print(proj_dir)"
         | 
| 47 | 
            +
               ]
         | 
| 48 | 
            +
              },
         | 
| 49 | 
            +
              {
         | 
| 50 | 
            +
               "cell_type": "markdown",
         | 
| 51 | 
            +
               "id": "76119e74-f601-436d-a253-63c5a19d1c83",
         | 
| 52 | 
            +
               "metadata": {},
         | 
| 53 | 
            +
               "source": [
         | 
| 54 | 
            +
                "# Config"
         | 
| 55 | 
            +
               ]
         | 
| 56 | 
            +
              },
         | 
| 57 | 
            +
              {
         | 
| 58 | 
            +
               "cell_type": "code",
         | 
| 59 | 
            +
               "execution_count": 3,
         | 
| 60 | 
            +
               "id": "f6f74545-54a7-4f41-9f02-96964e1417f0",
         | 
| 61 | 
            +
               "metadata": {
         | 
| 62 | 
            +
                "tags": []
         | 
| 63 | 
            +
               },
         | 
| 64 | 
            +
               "outputs": [],
         | 
| 65 | 
            +
               "source": [
         | 
| 66 | 
            +
                "files_in = list((proj_dir / 'data/consolidated').glob('*.ndjson'))\n",
         | 
| 67 | 
            +
                "folder_out = proj_dir / 'data/processed'\n",
         | 
| 68 | 
            +
                "folder_out_str = str(folder_out)"
         | 
| 69 | 
            +
               ]
         | 
| 70 | 
            +
              },
         | 
| 71 | 
            +
              {
         | 
| 72 | 
            +
               "cell_type": "markdown",
         | 
| 73 | 
            +
               "id": "509f41f9-a59f-4171-b61f-ae0cf756fc92",
         | 
| 74 | 
            +
               "metadata": {},
         | 
| 75 | 
            +
               "source": [
         | 
| 76 | 
            +
                "# Analysis"
         | 
| 77 | 
            +
               ]
         | 
| 78 | 
            +
              },
         | 
| 79 | 
            +
              {
         | 
| 80 | 
            +
               "cell_type": "code",
         | 
| 81 | 
            +
               "execution_count": 4,
         | 
| 82 | 
            +
               "id": "f0cbd1c9-3105-4940-85dc-c01ccaa217c7",
         | 
| 83 | 
            +
               "metadata": {
         | 
| 84 | 
            +
                "tags": []
         | 
| 85 | 
            +
               },
         | 
| 86 | 
            +
               "outputs": [],
         | 
| 87 | 
            +
               "source": [
         | 
| 88 | 
            +
                "with open(files_in[0], 'r') as f:\n",
         | 
| 89 | 
            +
                "    articles = [json.loads(line) for line in f]"
         | 
| 90 | 
            +
               ]
         | 
| 91 | 
            +
              },
         | 
| 92 | 
            +
              {
         | 
| 93 | 
            +
               "cell_type": "code",
         | 
| 94 | 
            +
               "execution_count": 5,
         | 
| 95 | 
            +
               "id": "004aae7b-1a2f-4a0b-9450-5d80475258b1",
         | 
| 96 | 
            +
               "metadata": {
         | 
| 97 | 
            +
                "tags": []
         | 
| 98 | 
            +
               },
         | 
| 99 | 
            +
               "outputs": [
         | 
| 100 | 
            +
                {
         | 
| 101 | 
            +
                 "name": "stdout",
         | 
| 102 | 
            +
                 "output_type": "stream",
         | 
| 103 | 
            +
                 "text": [
         | 
| 104 | 
            +
                  "{'content': 'ุงูู
ุงุก ู
ุงุฏุฉู ุดูุงูุฉู ุนุฏูู
ุฉ ุงูููู ูุงูุฑุงุฆุญุฉุ ููู ุงูู
ูู...',\n",
         | 
| 105 | 
            +
                  " 'meta': {'id': '7',\n",
         | 
| 106 | 
            +
                  "          'revid': '2080427',\n",
         | 
| 107 | 
            +
                  "          'title': 'ู
ุงุก',\n",
         | 
| 108 | 
            +
                  "          'url': 'https://ar.wikipedia.org/wiki?curid=7'}}\n"
         | 
| 109 | 
            +
                 ]
         | 
| 110 | 
            +
                }
         | 
| 111 | 
            +
               ],
         | 
| 112 | 
            +
               "source": [
         | 
| 113 | 
            +
                "from pprint import pprint\n",
         | 
| 114 | 
            +
                "article = articles[0].copy()\n",
         | 
| 115 | 
            +
                "article['content'] = article['content'][:50] + '...'\n",
         | 
| 116 | 
            +
                "pprint(article)"
         | 
| 117 | 
            +
               ]
         | 
| 118 | 
            +
              },
         | 
| 119 | 
            +
              {
         | 
| 120 | 
            +
               "cell_type": "markdown",
         | 
| 121 | 
            +
               "id": "6a643cf2-abce-48a9-b4e0-478bcbee28c3",
         | 
| 122 | 
            +
               "metadata": {},
         | 
| 123 | 
            +
               "source": [
         | 
| 124 | 
            +
                "# Preprocessing"
         | 
| 125 | 
            +
               ]
         | 
| 126 | 
            +
              },
         | 
| 127 | 
            +
              {
         | 
| 128 | 
            +
               "cell_type": "markdown",
         | 
| 129 | 
            +
               "id": "a8f9630e-447e-423e-9f6c-e1dbc654f2dd",
         | 
| 130 | 
            +
               "metadata": {},
         | 
| 131 | 
            +
               "source": [
         | 
| 132 | 
            +
                "Its important to choose good pre-processing options. \n",
         | 
| 133 | 
            +
                "\n",
         | 
| 134 | 
            +
                "Clean whitespace helps each stage of RAG. It adds noise to the embeddings, and wastes space when we prompt with it.\n",
         | 
| 135 | 
            +
                "\n",
         | 
| 136 | 
            +
                "I chose to split by word as it would be tedious to tokenize here, and that doesnt scale well. The context length for most embedding models ends up being 512 tokens. We saw this within a good z-score is ~225 token.\n",
         | 
| 137 | 
            +
                "\n",
         | 
| 138 | 
            +
                "I like to respect the sentence boundary, thats why I gave a ~50 word buffer."
         | 
| 139 | 
            +
               ]
         | 
| 140 | 
            +
              },
         | 
| 141 | 
            +
              {
         | 
| 142 | 
            +
               "cell_type": "code",
         | 
| 143 | 
            +
               "execution_count": 6,
         | 
| 144 | 
            +
               "id": "18807aea-24e4-4d74-bf10-55b24f3cb52c",
         | 
| 145 | 
            +
               "metadata": {
         | 
| 146 | 
            +
                "tags": []
         | 
| 147 | 
            +
               },
         | 
| 148 | 
            +
               "outputs": [],
         | 
| 149 | 
            +
               "source": [
         | 
| 150 | 
            +
                "pp = PreProcessor(clean_whitespace = True,\n",
         | 
| 151 | 
            +
                "             clean_header_footer = False,\n",
         | 
| 152 | 
            +
                "             clean_empty_lines = True,\n",
         | 
| 153 | 
            +
                "             remove_substrings = None,\n",
         | 
| 154 | 
            +
                "             split_by='word',\n",
         | 
| 155 | 
            +
                "             split_length = 225,\n",
         | 
| 156 | 
            +
                "             split_overlap = 50,\n",
         | 
| 157 | 
            +
                "             split_respect_sentence_boundary = True,\n",
         | 
| 158 | 
            +
                "             tokenizer_model_folder = None,\n",
         | 
| 159 | 
            +
                "             id_hash_keys = None,\n",
         | 
| 160 | 
            +
                "             progress_bar = False,\n",
         | 
| 161 | 
            +
                "             add_page_number = False,\n",
         | 
| 162 | 
            +
                "             max_chars_check = 10_000)"
         | 
| 163 | 
            +
               ]
         | 
| 164 | 
            +
              },
         | 
| 165 | 
            +
              {
         | 
| 166 | 
            +
               "cell_type": "markdown",
         | 
| 167 | 
            +
               "id": "3c1ab000-6574-485e-87f6-cc210f6e8a61",
         | 
| 168 | 
            +
               "metadata": {},
         | 
| 169 | 
            +
               "source": [
         | 
| 170 | 
            +
                "When we break a wikipedia article up, we lose some of the context. The local context is somewhat preserved by the `split_overlap`. Im trying to preserve the global context by adding a prefix that has the article's title.\n",
         | 
| 171 | 
            +
                "\n",
         | 
| 172 | 
            +
                "You could enhance this with the summary as well. This is mostly to help the retrieval step of RAG. Note that the way Im doing it alters some of `haystack`'s features like the hash and the lengths, but those arent too necessary. \n",
         | 
| 173 | 
            +
                "\n",
         | 
| 174 | 
            +
                "A more advanced way for many business applications would be to summarize the document and add that as a prefix for sub-documents.\n",
         | 
| 175 | 
            +
                "\n",
         | 
| 176 | 
            +
                "One last thing to note, is that it would be prudent (in some use-cases) to preserve the original document without the summary to give to the reader (retrieve with the summary but prompt without), but since this is a demo use-case I wont be doing that."
         | 
| 177 | 
            +
               ]
         | 
| 178 | 
            +
              },
         | 
| 179 | 
            +
              {
         | 
| 180 | 
            +
               "cell_type": "code",
         | 
| 181 | 
            +
               "execution_count": 7,
         | 
| 182 | 
            +
               "id": "63871bdd-0369-4dd7-a65e-ccba29baed44",
         | 
| 183 | 
            +
               "metadata": {},
         | 
| 184 | 
            +
               "outputs": [],
         | 
| 185 | 
            +
               "source": [
         | 
| 186 | 
            +
                "with open(files_in[0], 'r', encoding='utf-8') as f:\n",
         | 
| 187 | 
            +
                "    articles = [json.loads(line) for line in f]"
         | 
| 188 | 
            +
               ]
         | 
| 189 | 
            +
              },
         | 
| 190 | 
            +
              {
         | 
| 191 | 
            +
               "cell_type": "code",
         | 
| 192 | 
            +
               "execution_count": 8,
         | 
| 193 | 
            +
               "id": "5c3b48b7-3c0f-41ba-a423-b716649efcaa",
         | 
| 194 | 
            +
               "metadata": {
         | 
| 195 | 
            +
                "tags": []
         | 
| 196 | 
            +
               },
         | 
| 197 | 
            +
               "outputs": [
         | 
| 198 | 
            +
                {
         | 
| 199 | 
            +
                 "name": "stderr",
         | 
| 200 | 
            +
                 "output_type": "stream",
         | 
| 201 | 
            +
                 "text": [
         | 
| 202 | 
            +
                  "We found one or more sentences whose word count is higher than the split length.\n",
         | 
| 203 | 
            +
                  "Document e3e2bf8b3399979cb16219b175041b4d is 11336 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 204 | 
            +
                  "Document 91ad1d1a24e93abacabd5a5478a96977 is 14251 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 205 | 
            +
                  "Document 1625c431c0fcfaf81c13e0da59071a81 is 13395 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 206 | 
            +
                  "Document 790d3b2d94a68cbec6d77f3c15d0e679 is 13484 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 207 | 
            +
                  "Document e2dcf80a1f9dfc118aed059255f9b90b is 13217 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
         | 
| 208 | 
            +
                 ]
         | 
| 209 | 
            +
                },
         | 
| 210 | 
            +
                {
         | 
| 211 | 
            +
                 "name": "stdout",
         | 
| 212 | 
            +
                 "output_type": "stream",
         | 
| 213 | 
            +
                 "text": [
         | 
| 214 | 
            +
                  "CPU times: user 3min 31s, sys: 95.1 ms, total: 3min 31s\n",
         | 
| 215 | 
            +
                  "Wall time: 3min 31s\n"
         | 
| 216 | 
            +
                 ]
         | 
| 217 | 
            +
                }
         | 
| 218 | 
            +
               ],
         | 
| 219 | 
            +
               "source": [
         | 
| 220 | 
            +
                "%%time\n",
         | 
| 221 | 
            +
                "documents = pp.process(articles)"
         | 
| 222 | 
            +
               ]
         | 
| 223 | 
            +
              },
         | 
| 224 | 
            +
              {
         | 
| 225 | 
            +
               "cell_type": "code",
         | 
| 226 | 
            +
               "execution_count": 9,
         | 
| 227 | 
            +
               "id": "de6e1690-131a-41d1-a473-c908c2e40939",
         | 
| 228 | 
            +
               "metadata": {},
         | 
| 229 | 
            +
               "outputs": [
         | 
| 230 | 
            +
                {
         | 
| 231 | 
            +
                 "name": "stderr",
         | 
| 232 | 
            +
                 "output_type": "stream",
         | 
| 233 | 
            +
                 "text": [
         | 
| 234 | 
            +
                  "Document 91ad1d1a24e93abacabd5a5478a96977 is 14251 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 235 | 
            +
                  "Document e3e2bf8b3399979cb16219b175041b4d is 11336 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 236 | 
            +
                  "Document 1625c431c0fcfaf81c13e0da59071a81 is 13395 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 237 | 
            +
                  "Document 790d3b2d94a68cbec6d77f3c15d0e679 is 13484 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 238 | 
            +
                  "Document e2dcf80a1f9dfc118aed059255f9b90b is 13217 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
         | 
| 239 | 
            +
                 ]
         | 
| 240 | 
            +
                },
         | 
| 241 | 
            +
                {
         | 
| 242 | 
            +
                 "name": "stdout",
         | 
| 243 | 
            +
                 "output_type": "stream",
         | 
| 244 | 
            +
                 "text": [
         | 
| 245 | 
            +
                  "CPU times: user 6.86 s, sys: 1.31 s, total: 8.16 s\n",
         | 
| 246 | 
            +
                  "Wall time: 1min 33s\n"
         | 
| 247 | 
            +
                 ]
         | 
| 248 | 
            +
                }
         | 
| 249 | 
            +
               ],
         | 
| 250 | 
            +
               "source": [
         | 
| 251 | 
            +
                "%%time\n",
         | 
| 252 | 
            +
                "import os\n",
         | 
| 253 | 
            +
                "import concurrent.futures\n",
         | 
| 254 | 
            +
                "\n",
         | 
| 255 | 
            +
                "def parallel_preprocessing(articles):\n",
         | 
| 256 | 
            +
                "    # Utility function to divide the articles into smaller chunks\n",
         | 
| 257 | 
            +
                "    def chunkify(lst, n):\n",
         | 
| 258 | 
            +
                "        \"\"\"Yield successive n-sized chunks from lst.\"\"\"\n",
         | 
| 259 | 
            +
                "        for i in range(0, len(lst), n):\n",
         | 
| 260 | 
            +
                "            yield lst[i:i + n]\n",
         | 
| 261 | 
            +
                "\n",
         | 
| 262 | 
            +
                "    # Size of each chunk. Adjust based on your needs.\n",
         | 
| 263 | 
            +
                "    CHUNK_SIZE = 10_000  \n",
         | 
| 264 | 
            +
                "    article_chunks = list(chunkify(articles, CHUNK_SIZE))\n",
         | 
| 265 | 
            +
                "\n",
         | 
| 266 | 
            +
                "    # Number of processes to run in parallel.\n",
         | 
| 267 | 
            +
                "    # Use all available CPUs, but you can reduce the number if you wish to leave some CPUs free.\n",
         | 
| 268 | 
            +
                "    NUM_PROCESSES = os.cpu_count()  \n",
         | 
| 269 | 
            +
                "\n",
         | 
| 270 | 
            +
                "    with concurrent.futures.ProcessPoolExecutor(max_workers=NUM_PROCESSES) as executor:\n",
         | 
| 271 | 
            +
                "        documents_list = list(executor.map(pp.process, article_chunks))\n",
         | 
| 272 | 
            +
                "\n",
         | 
| 273 | 
            +
                "    # Flatten the documents_list to get a single list of documents\n",
         | 
| 274 | 
            +
                "    documents = [doc for sublist in documents_list for doc in sublist]\n",
         | 
| 275 | 
            +
                "    return documents\n",
         | 
| 276 | 
            +
                "\n",
         | 
| 277 | 
            +
                "documents = parallel_preprocessing(articles)\n"
         | 
| 278 | 
            +
               ]
         | 
| 279 | 
            +
              },
         | 
| 280 | 
            +
              {
         | 
| 281 | 
            +
               "cell_type": "code",
         | 
| 282 | 
            +
               "execution_count": 10,
         | 
| 283 | 
            +
               "id": "dab1658a-79a7-40f2-9a8c-1798e0d124bf",
         | 
| 284 | 
            +
               "metadata": {
         | 
| 285 | 
            +
                "tags": []
         | 
| 286 | 
            +
               },
         | 
| 287 | 
            +
               "outputs": [
         | 
| 288 | 
            +
                {
         | 
| 289 | 
            +
                 "data": {
         | 
| 290 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 291 | 
            +
                   "model_id": "a4d4ade8158144c6a06f072b550157c3",
         | 
| 292 | 
            +
                   "version_major": 2,
         | 
| 293 | 
            +
                   "version_minor": 0
         | 
| 294 | 
            +
                  },
         | 
| 295 | 
            +
                  "text/plain": [
         | 
| 296 | 
            +
                   "  0%|          | 0/23 [00:00<?, ?it/s]"
         | 
| 297 | 
            +
                  ]
         | 
| 298 | 
            +
                 },
         | 
| 299 | 
            +
                 "metadata": {},
         | 
| 300 | 
            +
                 "output_type": "display_data"
         | 
| 301 | 
            +
                },
         | 
| 302 | 
            +
                {
         | 
| 303 | 
            +
                 "name": "stderr",
         | 
| 304 | 
            +
                 "output_type": "stream",
         | 
| 305 | 
            +
                 "text": [
         | 
| 306 | 
            +
                  "Document 91ad1d1a24e93abacabd5a5478a96977 is 14251 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 307 | 
            +
                  "Document e3e2bf8b3399979cb16219b175041b4d is 11336 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 308 | 
            +
                  "Document 1625c431c0fcfaf81c13e0da59071a81 is 13395 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 309 | 
            +
                  "Document 790d3b2d94a68cbec6d77f3c15d0e679 is 13484 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 310 | 
            +
                  "Document e2dcf80a1f9dfc118aed059255f9b90b is 13217 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
         | 
| 311 | 
            +
                 ]
         | 
| 312 | 
            +
                },
         | 
| 313 | 
            +
                {
         | 
| 314 | 
            +
                 "data": {
         | 
| 315 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 316 | 
            +
                   "model_id": "bcb8fe6999ec408f99ef25c96c85c7b3",
         | 
| 317 | 
            +
                   "version_major": 2,
         | 
| 318 | 
            +
                   "version_minor": 0
         | 
| 319 | 
            +
                  },
         | 
| 320 | 
            +
                  "text/plain": [
         | 
| 321 | 
            +
                   "  0%|          | 0/243068 [00:00<?, ?it/s]"
         | 
| 322 | 
            +
                  ]
         | 
| 323 | 
            +
                 },
         | 
| 324 | 
            +
                 "metadata": {},
         | 
| 325 | 
            +
                 "output_type": "display_data"
         | 
| 326 | 
            +
                },
         | 
| 327 | 
            +
                {
         | 
| 328 | 
            +
                 "name": "stderr",
         | 
| 329 | 
            +
                 "output_type": "stream",
         | 
| 330 | 
            +
                 "text": [
         | 
| 331 | 
            +
                  "Document 2693d73124e824fb45633e34189a6226 is 14375 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
         | 
| 332 | 
            +
                 ]
         | 
| 333 | 
            +
                },
         | 
| 334 | 
            +
                {
         | 
| 335 | 
            +
                 "data": {
         | 
| 336 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 337 | 
            +
                   "model_id": "6ac231651a214181be49584511c97fe9",
         | 
| 338 | 
            +
                   "version_major": 2,
         | 
| 339 | 
            +
                   "version_minor": 0
         | 
| 340 | 
            +
                  },
         | 
| 341 | 
            +
                  "text/plain": [
         | 
| 342 | 
            +
                   "  0%|          | 0/104065 [00:00<?, ?it/s]"
         | 
| 343 | 
            +
                  ]
         | 
| 344 | 
            +
                 },
         | 
| 345 | 
            +
                 "metadata": {},
         | 
| 346 | 
            +
                 "output_type": "display_data"
         | 
| 347 | 
            +
                },
         | 
| 348 | 
            +
                {
         | 
| 349 | 
            +
                 "data": {
         | 
| 350 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 351 | 
            +
                   "model_id": "c43b5ac1f3b84cac8f2715c5dcf21fb8",
         | 
| 352 | 
            +
                   "version_major": 2,
         | 
| 353 | 
            +
                   "version_minor": 0
         | 
| 354 | 
            +
                  },
         | 
| 355 | 
            +
                  "text/plain": [
         | 
| 356 | 
            +
                   "  0%|          | 0/123154 [00:00<?, ?it/s]"
         | 
| 357 | 
            +
                  ]
         | 
| 358 | 
            +
                 },
         | 
| 359 | 
            +
                 "metadata": {},
         | 
| 360 | 
            +
                 "output_type": "display_data"
         | 
| 361 | 
            +
                },
         | 
| 362 | 
            +
                {
         | 
| 363 | 
            +
                 "data": {
         | 
| 364 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 365 | 
            +
                   "model_id": "a1b8201fc0ba44cf9ac938556c7effc8",
         | 
| 366 | 
            +
                   "version_major": 2,
         | 
| 367 | 
            +
                   "version_minor": 0
         | 
| 368 | 
            +
                  },
         | 
| 369 | 
            +
                  "text/plain": [
         | 
| 370 | 
            +
                   "  0%|          | 0/135965 [00:00<?, ?it/s]"
         | 
| 371 | 
            +
                  ]
         | 
| 372 | 
            +
                 },
         | 
| 373 | 
            +
                 "metadata": {},
         | 
| 374 | 
            +
                 "output_type": "display_data"
         | 
| 375 | 
            +
                },
         | 
| 376 | 
            +
                {
         | 
| 377 | 
            +
                 "data": {
         | 
| 378 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 379 | 
            +
                   "model_id": "58ce68b1b5044b0eb1c457495159cb6d",
         | 
| 380 | 
            +
                   "version_major": 2,
         | 
| 381 | 
            +
                   "version_minor": 0
         | 
| 382 | 
            +
                  },
         | 
| 383 | 
            +
                  "text/plain": [
         | 
| 384 | 
            +
                   "  0%|          | 0/99138 [00:00<?, ?it/s]"
         | 
| 385 | 
            +
                  ]
         | 
| 386 | 
            +
                 },
         | 
| 387 | 
            +
                 "metadata": {},
         | 
| 388 | 
            +
                 "output_type": "display_data"
         | 
| 389 | 
            +
                },
         | 
| 390 | 
            +
                {
         | 
| 391 | 
            +
                 "data": {
         | 
| 392 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 393 | 
            +
                   "model_id": "b80a37f6986e478d85397f7295b67079",
         | 
| 394 | 
            +
                   "version_major": 2,
         | 
| 395 | 
            +
                   "version_minor": 0
         | 
| 396 | 
            +
                  },
         | 
| 397 | 
            +
                  "text/plain": [
         | 
| 398 | 
            +
                   "  0%|          | 0/83678 [00:00<?, ?it/s]"
         | 
| 399 | 
            +
                  ]
         | 
| 400 | 
            +
                 },
         | 
| 401 | 
            +
                 "metadata": {},
         | 
| 402 | 
            +
                 "output_type": "display_data"
         | 
| 403 | 
            +
                },
         | 
| 404 | 
            +
                {
         | 
| 405 | 
            +
                 "data": {
         | 
| 406 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 407 | 
            +
                   "model_id": "8197d71a396e47588699f22e44c843af",
         | 
| 408 | 
            +
                   "version_major": 2,
         | 
| 409 | 
            +
                   "version_minor": 0
         | 
| 410 | 
            +
                  },
         | 
| 411 | 
            +
                  "text/plain": [
         | 
| 412 | 
            +
                   "  0%|          | 0/30573 [00:00<?, ?it/s]"
         | 
| 413 | 
            +
                  ]
         | 
| 414 | 
            +
                 },
         | 
| 415 | 
            +
                 "metadata": {},
         | 
| 416 | 
            +
                 "output_type": "display_data"
         | 
| 417 | 
            +
                },
         | 
| 418 | 
            +
                {
         | 
| 419 | 
            +
                 "data": {
         | 
| 420 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 421 | 
            +
                   "model_id": "39024c19258b41c4bcd7b6e5c0617d54",
         | 
| 422 | 
            +
                   "version_major": 2,
         | 
| 423 | 
            +
                   "version_minor": 0
         | 
| 424 | 
            +
                  },
         | 
| 425 | 
            +
                  "text/plain": [
         | 
| 426 | 
            +
                   "  0%|          | 0/78957 [00:00<?, ?it/s]"
         | 
| 427 | 
            +
                  ]
         | 
| 428 | 
            +
                 },
         | 
| 429 | 
            +
                 "metadata": {},
         | 
| 430 | 
            +
                 "output_type": "display_data"
         | 
| 431 | 
            +
                },
         | 
| 432 | 
            +
                {
         | 
| 433 | 
            +
                 "data": {
         | 
| 434 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 435 | 
            +
                   "model_id": "aa26a27b522448b3bc2808f8ad650a28",
         | 
| 436 | 
            +
                   "version_major": 2,
         | 
| 437 | 
            +
                   "version_minor": 0
         | 
| 438 | 
            +
                  },
         | 
| 439 | 
            +
                  "text/plain": [
         | 
| 440 | 
            +
                   "  0%|          | 0/86327 [00:00<?, ?it/s]"
         | 
| 441 | 
            +
                  ]
         | 
| 442 | 
            +
                 },
         | 
| 443 | 
            +
                 "metadata": {},
         | 
| 444 | 
            +
                 "output_type": "display_data"
         | 
| 445 | 
            +
                },
         | 
| 446 | 
            +
                {
         | 
| 447 | 
            +
                 "data": {
         | 
| 448 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 449 | 
            +
                   "model_id": "3aae87d4a40d4e9e937646f02c969bb2",
         | 
| 450 | 
            +
                   "version_major": 2,
         | 
| 451 | 
            +
                   "version_minor": 0
         | 
| 452 | 
            +
                  },
         | 
| 453 | 
            +
                  "text/plain": [
         | 
| 454 | 
            +
                   "  0%|          | 0/83111 [00:00<?, ?it/s]"
         | 
| 455 | 
            +
                  ]
         | 
| 456 | 
            +
                 },
         | 
| 457 | 
            +
                 "metadata": {},
         | 
| 458 | 
            +
                 "output_type": "display_data"
         | 
| 459 | 
            +
                },
         | 
| 460 | 
            +
                {
         | 
| 461 | 
            +
                 "data": {
         | 
| 462 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 463 | 
            +
                   "model_id": "16038478b51a422d8ed7d597c9812999",
         | 
| 464 | 
            +
                   "version_major": 2,
         | 
| 465 | 
            +
                   "version_minor": 0
         | 
| 466 | 
            +
                  },
         | 
| 467 | 
            +
                  "text/plain": [
         | 
| 468 | 
            +
                   "  0%|          | 0/92664 [00:00<?, ?it/s]"
         | 
| 469 | 
            +
                  ]
         | 
| 470 | 
            +
                 },
         | 
| 471 | 
            +
                 "metadata": {},
         | 
| 472 | 
            +
                 "output_type": "display_data"
         | 
| 473 | 
            +
                },
         | 
| 474 | 
            +
                {
         | 
| 475 | 
            +
                 "data": {
         | 
| 476 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 477 | 
            +
                   "model_id": "0b9ea31fc970402f8368b4be64d91546",
         | 
| 478 | 
            +
                   "version_major": 2,
         | 
| 479 | 
            +
                   "version_minor": 0
         | 
| 480 | 
            +
                  },
         | 
| 481 | 
            +
                  "text/plain": [
         | 
| 482 | 
            +
                   "  0%|          | 0/66404 [00:00<?, ?it/s]"
         | 
| 483 | 
            +
                  ]
         | 
| 484 | 
            +
                 },
         | 
| 485 | 
            +
                 "metadata": {},
         | 
| 486 | 
            +
                 "output_type": "display_data"
         | 
| 487 | 
            +
                },
         | 
| 488 | 
            +
                {
         | 
| 489 | 
            +
                 "data": {
         | 
| 490 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 491 | 
            +
                   "model_id": "710bf094621c4472bc6d3973619627df",
         | 
| 492 | 
            +
                   "version_major": 2,
         | 
| 493 | 
            +
                   "version_minor": 0
         | 
| 494 | 
            +
                  },
         | 
| 495 | 
            +
                  "text/plain": [
         | 
| 496 | 
            +
                   "  0%|          | 0/62844 [00:00<?, ?it/s]"
         | 
| 497 | 
            +
                  ]
         | 
| 498 | 
            +
                 },
         | 
| 499 | 
            +
                 "metadata": {},
         | 
| 500 | 
            +
                 "output_type": "display_data"
         | 
| 501 | 
            +
                },
         | 
| 502 | 
            +
                {
         | 
| 503 | 
            +
                 "data": {
         | 
| 504 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 505 | 
            +
                   "model_id": "0bae815b7b7448978fd042b6381b63ba",
         | 
| 506 | 
            +
                   "version_major": 2,
         | 
| 507 | 
            +
                   "version_minor": 0
         | 
| 508 | 
            +
                  },
         | 
| 509 | 
            +
                  "text/plain": [
         | 
| 510 | 
            +
                   "  0%|          | 0/59349 [00:00<?, ?it/s]"
         | 
| 511 | 
            +
                  ]
         | 
| 512 | 
            +
                 },
         | 
| 513 | 
            +
                 "metadata": {},
         | 
| 514 | 
            +
                 "output_type": "display_data"
         | 
| 515 | 
            +
                },
         | 
| 516 | 
            +
                {
         | 
| 517 | 
            +
                 "data": {
         | 
| 518 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 519 | 
            +
                   "model_id": "483c99d5547a4bedb10802f9bbe414d3",
         | 
| 520 | 
            +
                   "version_major": 2,
         | 
| 521 | 
            +
                   "version_minor": 0
         | 
| 522 | 
            +
                  },
         | 
| 523 | 
            +
                  "text/plain": [
         | 
| 524 | 
            +
                   "  0%|          | 0/52554 [00:00<?, ?it/s]"
         | 
| 525 | 
            +
                  ]
         | 
| 526 | 
            +
                 },
         | 
| 527 | 
            +
                 "metadata": {},
         | 
| 528 | 
            +
                 "output_type": "display_data"
         | 
| 529 | 
            +
                },
         | 
| 530 | 
            +
                {
         | 
| 531 | 
            +
                 "name": "stderr",
         | 
| 532 | 
            +
                 "output_type": "stream",
         | 
| 533 | 
            +
                 "text": [
         | 
| 534 | 
            +
                  "Document c55a744420239d9865b23f9ff7ab37cc is 23179 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 535 | 
            +
                  "Document 991fef35ead593c41f1dc73224ed7799 is 13179 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
         | 
| 536 | 
            +
                 ]
         | 
| 537 | 
            +
                },
         | 
| 538 | 
            +
                {
         | 
| 539 | 
            +
                 "data": {
         | 
| 540 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 541 | 
            +
                   "model_id": "34288f7c2437440ab07134116a6f5bf2",
         | 
| 542 | 
            +
                   "version_major": 2,
         | 
| 543 | 
            +
                   "version_minor": 0
         | 
| 544 | 
            +
                  },
         | 
| 545 | 
            +
                  "text/plain": [
         | 
| 546 | 
            +
                   "  0%|          | 0/34240 [00:00<?, ?it/s]"
         | 
| 547 | 
            +
                  ]
         | 
| 548 | 
            +
                 },
         | 
| 549 | 
            +
                 "metadata": {},
         | 
| 550 | 
            +
                 "output_type": "display_data"
         | 
| 551 | 
            +
                },
         | 
| 552 | 
            +
                {
         | 
| 553 | 
            +
                 "data": {
         | 
| 554 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 555 | 
            +
                   "model_id": "c6b95ccc5799488980af6f73ab564c8b",
         | 
| 556 | 
            +
                   "version_major": 2,
         | 
| 557 | 
            +
                   "version_minor": 0
         | 
| 558 | 
            +
                  },
         | 
| 559 | 
            +
                  "text/plain": [
         | 
| 560 | 
            +
                   "  0%|          | 0/35933 [00:00<?, ?it/s]"
         | 
| 561 | 
            +
                  ]
         | 
| 562 | 
            +
                 },
         | 
| 563 | 
            +
                 "metadata": {},
         | 
| 564 | 
            +
                 "output_type": "display_data"
         | 
| 565 | 
            +
                },
         | 
| 566 | 
            +
                {
         | 
| 567 | 
            +
                 "name": "stderr",
         | 
| 568 | 
            +
                 "output_type": "stream",
         | 
| 569 | 
            +
                 "text": [
         | 
| 570 | 
            +
                  "Document c4ae5d66606dcc644293946f8f5c7cab is 10612 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
         | 
| 571 | 
            +
                 ]
         | 
| 572 | 
            +
                },
         | 
| 573 | 
            +
                {
         | 
| 574 | 
            +
                 "data": {
         | 
| 575 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 576 | 
            +
                   "model_id": "c6794c5150274e5cb2a09c52bfcf4c1a",
         | 
| 577 | 
            +
                   "version_major": 2,
         | 
| 578 | 
            +
                   "version_minor": 0
         | 
| 579 | 
            +
                  },
         | 
| 580 | 
            +
                  "text/plain": [
         | 
| 581 | 
            +
                   "  0%|          | 0/64575 [00:00<?, ?it/s]"
         | 
| 582 | 
            +
                  ]
         | 
| 583 | 
            +
                 },
         | 
| 584 | 
            +
                 "metadata": {},
         | 
| 585 | 
            +
                 "output_type": "display_data"
         | 
| 586 | 
            +
                },
         | 
| 587 | 
            +
                {
         | 
| 588 | 
            +
                 "data": {
         | 
| 589 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 590 | 
            +
                   "model_id": "5aaf9358178d4daf9169a14cd71aa20f",
         | 
| 591 | 
            +
                   "version_major": 2,
         | 
| 592 | 
            +
                   "version_minor": 0
         | 
| 593 | 
            +
                  },
         | 
| 594 | 
            +
                  "text/plain": [
         | 
| 595 | 
            +
                   "  0%|          | 0/94244 [00:00<?, ?it/s]"
         | 
| 596 | 
            +
                  ]
         | 
| 597 | 
            +
                 },
         | 
| 598 | 
            +
                 "metadata": {},
         | 
| 599 | 
            +
                 "output_type": "display_data"
         | 
| 600 | 
            +
                },
         | 
| 601 | 
            +
                {
         | 
| 602 | 
            +
                 "name": "stderr",
         | 
| 603 | 
            +
                 "output_type": "stream",
         | 
| 604 | 
            +
                 "text": [
         | 
| 605 | 
            +
                  "Document 1d1357a32c6cd115525ceb0590e6d67d is 11314 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 606 | 
            +
                  "Document eca1c79de6ca898903e5db0a44a54803 is 24659 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n",
         | 
| 607 | 
            +
                  "Document 8a59ff0086cc7772046f54a065566ff9 is 14659 characters long after preprocessing, where the maximum length should be 10000. Something might be wrong with the splitting, check the document affected to prevent issues at query time. This document will be now hard-split at 10000 chars recursively.\n"
         | 
| 608 | 
            +
                 ]
         | 
| 609 | 
            +
                },
         | 
| 610 | 
            +
                {
         | 
| 611 | 
            +
                 "data": {
         | 
| 612 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 613 | 
            +
                   "model_id": "102f3b5a0c5e46f69742b9f41cc79928",
         | 
| 614 | 
            +
                   "version_major": 2,
         | 
| 615 | 
            +
                   "version_minor": 0
         | 
| 616 | 
            +
                  },
         | 
| 617 | 
            +
                  "text/plain": [
         | 
| 618 | 
            +
                   "  0%|          | 0/124472 [00:00<?, ?it/s]"
         | 
| 619 | 
            +
                  ]
         | 
| 620 | 
            +
                 },
         | 
| 621 | 
            +
                 "metadata": {},
         | 
| 622 | 
            +
                 "output_type": "display_data"
         | 
| 623 | 
            +
                },
         | 
| 624 | 
            +
                {
         | 
| 625 | 
            +
                 "data": {
         | 
| 626 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 627 | 
            +
                   "model_id": "3e4803f9fc3d405eac97a64489c0d7e0",
         | 
| 628 | 
            +
                   "version_major": 2,
         | 
| 629 | 
            +
                   "version_minor": 0
         | 
| 630 | 
            +
                  },
         | 
| 631 | 
            +
                  "text/plain": [
         | 
| 632 | 
            +
                   "  0%|          | 0/121849 [00:00<?, ?it/s]"
         | 
| 633 | 
            +
                  ]
         | 
| 634 | 
            +
                 },
         | 
| 635 | 
            +
                 "metadata": {},
         | 
| 636 | 
            +
                 "output_type": "display_data"
         | 
| 637 | 
            +
                },
         | 
| 638 | 
            +
                {
         | 
| 639 | 
            +
                 "data": {
         | 
| 640 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 641 | 
            +
                   "model_id": "d2b4c133d207446c96b4e576aac15bf7",
         | 
| 642 | 
            +
                   "version_major": 2,
         | 
| 643 | 
            +
                   "version_minor": 0
         | 
| 644 | 
            +
                  },
         | 
| 645 | 
            +
                  "text/plain": [
         | 
| 646 | 
            +
                   "  0%|          | 0/147110 [00:00<?, ?it/s]"
         | 
| 647 | 
            +
                  ]
         | 
| 648 | 
            +
                 },
         | 
| 649 | 
            +
                 "metadata": {},
         | 
| 650 | 
            +
                 "output_type": "display_data"
         | 
| 651 | 
            +
                },
         | 
| 652 | 
            +
                {
         | 
| 653 | 
            +
                 "data": {
         | 
| 654 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 655 | 
            +
                   "model_id": "1cbd39af41ef4b20a8bc1bea7fe8186f",
         | 
| 656 | 
            +
                   "version_major": 2,
         | 
| 657 | 
            +
                   "version_minor": 0
         | 
| 658 | 
            +
                  },
         | 
| 659 | 
            +
                  "text/plain": [
         | 
| 660 | 
            +
                   "  0%|          | 0/70322 [00:00<?, ?it/s]"
         | 
| 661 | 
            +
                  ]
         | 
| 662 | 
            +
                 },
         | 
| 663 | 
            +
                 "metadata": {},
         | 
| 664 | 
            +
                 "output_type": "display_data"
         | 
| 665 | 
            +
                },
         | 
| 666 | 
            +
                {
         | 
| 667 | 
            +
                 "name": "stdout",
         | 
| 668 | 
            +
                 "output_type": "stream",
         | 
| 669 | 
            +
                 "text": [
         | 
| 670 | 
            +
                  "CPU times: user 2min 21s, sys: 20.1 s, total: 2min 41s\n",
         | 
| 671 | 
            +
                  "Wall time: 13min 36s\n"
         | 
| 672 | 
            +
                 ]
         | 
| 673 | 
            +
                }
         | 
| 674 | 
            +
               ],
         | 
| 675 | 
            +
               "source": [
         | 
| 676 | 
            +
                "%%time\n",
         | 
| 677 | 
            +
                "for file_in in tqdm(files_in):\n",
         | 
| 678 | 
            +
                "    # Load articles\n",
         | 
| 679 | 
            +
                "    with open(file_in, 'r', encoding='utf-8') as f:\n",
         | 
| 680 | 
            +
                "        articles = [json.loads(line) for line in f]\n",
         | 
| 681 | 
            +
                "        \n",
         | 
| 682 | 
            +
                "    # Preprocess articles\n",
         | 
| 683 | 
            +
                "    documents = parallel_preprocessing(articles)\n",
         | 
| 684 | 
            +
                "    \n",
         | 
| 685 | 
            +
                "    # Prefix each document's content\n",
         | 
| 686 | 
            +
                "    for document in tqdm(documents):\n",
         | 
| 687 | 
            +
                "        if document.meta['_split_id'] != 0:\n",
         | 
| 688 | 
            +
                "            document.content = f'ุนููุงู: {document.meta[\"title\"]}. ' + document.content\n",
         | 
| 689 | 
            +
                "            \n",
         | 
| 690 | 
            +
                "    processed_articles = [document.to_dict() for document in documents]\n",
         | 
| 691 | 
            +
                "    with open(folder_out/file_in.name, 'w', encoding='utf-8') as f:\n",
         | 
| 692 | 
            +
                "        for article in processed_articles:\n",
         | 
| 693 | 
            +
                "            json_str = json.dumps(article, ensure_ascii=False)\n",
         | 
| 694 | 
            +
                "            f.write(json_str + '\\n')\n",
         | 
| 695 | 
            +
                "        "
         | 
| 696 | 
            +
               ]
         | 
| 697 | 
            +
              },
         | 
| 698 | 
            +
              {
         | 
| 699 | 
            +
               "cell_type": "markdown",
         | 
| 700 | 
            +
               "id": "72c1849c-1f4d-411f-b74b-6208b1e48217",
         | 
| 701 | 
            +
               "metadata": {},
         | 
| 702 | 
            +
               "source": [
         | 
| 703 | 
            +
                "## Pre-processing Examples"
         | 
| 704 | 
            +
               ]
         | 
| 705 | 
            +
              },
         | 
| 706 | 
            +
              {
         | 
| 707 | 
            +
               "cell_type": "code",
         | 
| 708 | 
            +
               "execution_count": 11,
         | 
| 709 | 
            +
               "id": "02c1c6c8-6283-49a8-9d29-c355f1b08540",
         | 
| 710 | 
            +
               "metadata": {
         | 
| 711 | 
            +
                "tags": []
         | 
| 712 | 
            +
               },
         | 
| 713 | 
            +
               "outputs": [
         | 
| 714 | 
            +
                {
         | 
| 715 | 
            +
                 "data": {
         | 
| 716 | 
            +
                  "text/plain": [
         | 
| 717 | 
            +
                   "<Document: {'content': 'ุนุดุงุก ูุงุฑูู ูู ู
ู ุณูุณูุฉ ู
ุทุงุนู
 ุงุณุชุฑุงููุฉ ููุฏู ุนู
ุฏุงู ุนู ุชุฌุฑุจุฉ ุชูุงูู ุทุนุงู
 ุบูุฑ ุณุงุฑูุฉ ููุชู
 ุชูุฌูู ุงูู
ูุธููู ูุฅูุงูุฉ ุงูุนู
ูุงุก ุทูุงู ูุฌุจุงุชูู
.\\nุงูุชุจุณ ุงุณู
 ุงูู
ุทุนู
 ู
ู ุงูู
ุตุทูุญ ุงูุนุงู
ู ุนูู ุงูุฅูุชุฑูุช (ูุงุฑูู) ูุงูุฐู ูุณุชุฎุฏู
 ููุตู ุงู
ุฑุฃุฉ ุจูุถุงุก ู
ุณูุฉ ููุญุฉ ุจุดูู ูู
ุทู.\\nุชุงุฑูุฎ ุงูู
ุทุนู
.\\nุชู
 ุฅูุดุงุก ุงูุณูุณูุฉ ูู ุฃุณุชุฑุงููุง (ุณูุฏูู) ูู ุนุงู
 2021 ู
ู ูุจู ุฅูุฏูู ูููู ูุฌูู
ุณ ูุงุฑูู. ุงูู
ุทุนู
 ุฐู ุทุงุจุน ุฎุงุต ูุนุชู
ุฏ ุนูู ุฎุฏู
ุฉ ุชุฌุฑุจุฉ ุทุนุงู
 ุบูุฑ ุณุงุฑุฉ ุญูุซ ูุฏูุน ุงูุนู
ูุงุก ููู
ูุธููู ูุฅูุงูุชูู
 ููุงู ู
ู ุงูู
ูุชุฑุถ ุงู ูููู ุงูู
ุทุนู
 ู
ุทุนู
ุงู ู
ูุจุซูุงู ูู
ุฏุฉ ุณุชุฉ ุฃุดูุฑ ูู ููุฑูุฏ ุณูููุฑ.\\nุงุซุงุฑุช ููุฑุฉ ุงูู
ุทุนู
 ูู ุงูุจุฏุงูุฉ ุฑุฏุงุช ูุนู ู
ุชุบุงูุฑุฉ ู
ู
ุง ุฃุซุงุฑ ุงูุฎูู ุจุดุฃู ู
ุง ุฅุฐุง ูุงูุช ุงูุฅูุงูุงุช ุงูู
ุชุจุงุฏูุฉ ู
ู ุงูู
ู
ูู ุงู ุชุนุฑุถ ุงูู
ูุธููู ูุณูุก ุงูู
ุนุงู
ูุฉ ู
ู ูุจู ุงูุนู
ูุงุก.\\nุงุณู
 (ูุงุฑูู) ูู ุฅุดุงุฑุฉ ุฅูู ุงูุฅุณู
 ุงูู
ุณุชุฎุฏู
 ูู ุงูู
ูู
ุงุช (ุงูููุช ุงูุชู ุชูุดูุฑ ุจุณุฑุนุฉ ูู ู
ูุงูุน ุงูุชูุงุตู) ููุตู ุงู
ุฑุฃุฉ ุจูุถุงุก ูู ู
ูุชุตู ุงูุนู
ุฑ ูููุญุฉ ุจุดูู ูู
ุทู.\\nูุทูุจ ู
ู ุงูู
ูุธููู ุงุฑุชุฏุงุก ุดุฎุตูุฉ ููุญุฉ ูุงูุณุฎุฑูุฉ ู
ู ุงูุนู
ูุงุก ุจุดูู ูุฒูู ุงุซูุงุก ุชูุงูู ูุฌุจุงุชูู
 ูู
ู ุงูู
ุชููุน ุงู ูุนูุฏ ุงูุนู
ูุงุก ูุฐุง ุงูุณููู ู
ู ุฎูุงู ุงูุชุตุฑู ุจููุงุญุฉ ุชุฌุงู ุงูู
ูุธููู ูู
ุน ุฐูู ููุญุธุฑ ุนูู ุงูุนู
ูุงุก ูุงูู
ูุธููู ุงุณุชุฎุฏุงู
 ุงูุฅูุงูุงุช ุงูุนูุตุฑูุฉ ุฃู ุงูุชุญูุฒ ุงูุฌูุณู ุฃู ุฑูุงุจ ุงูู
ุซููุฉ ุงูุฌูุณูุฉ.\\nุชุชุถู
ู ุงูุนุฏูุฏ ู
ู ูุฐู ุงูุชุจุงุฏูุงุช ูุบุฉ ูุงุจูุฉ ููุฌุจ ุงู ูููู ุจุฑููุฉ ุงูุงุดุฎุงุต ุงููุฐูู ููููู ุนู 16 ุนุงู
ุงูู ุจุงูุบูู.\\nูู
ุง ูู
ูู ูู
ุงููู ุจุทุงูุฉ ูููุฉ ุชุธูุฑ ุงู ุงุณู
ูู
 ูุงุฑูู ุงูุญุตูู ุนูู ู
ุดุฑูุจ ู
ุฌุงูู.\\n', 'content_type': 'text', 'score': None, 'meta': {'id': '8974231', 'revid': '593870', 'url': 'https://ar.wikipedia.org/wiki?curid=8974231', 'title': 'ู
ุทุนู
 ุนุดุงุก ูุงุฑูู', '_split_id': 0, '_split_overlap': [{'doc_id': '288196225044b53e6ff86f2485257a0a', 'range': (790, 1225)}]}, 'id_hash_keys': ['content'], 'embedding': None, 'id': '1af84f3b4cc6a9f1018f2f80b4fd3ba7'}>"
         | 
| 718 | 
            +
                  ]
         | 
| 719 | 
            +
                 },
         | 
| 720 | 
            +
                 "execution_count": 11,
         | 
| 721 | 
            +
                 "metadata": {},
         | 
| 722 | 
            +
                 "output_type": "execute_result"
         | 
| 723 | 
            +
                }
         | 
| 724 | 
            +
               ],
         | 
| 725 | 
            +
               "source": [
         | 
| 726 | 
            +
                "documents[0]"
         | 
| 727 | 
            +
               ]
         | 
| 728 | 
            +
              },
         | 
| 729 | 
            +
              {
         | 
| 730 | 
            +
               "cell_type": "code",
         | 
| 731 | 
            +
               "execution_count": 12,
         | 
| 732 | 
            +
               "id": "b34890bf-9dba-459a-9b0d-aa4b5929cbe8",
         | 
| 733 | 
            +
               "metadata": {
         | 
| 734 | 
            +
                "tags": []
         | 
| 735 | 
            +
               },
         | 
| 736 | 
            +
               "outputs": [
         | 
| 737 | 
            +
                {
         | 
| 738 | 
            +
                 "data": {
         | 
| 739 | 
            +
                  "text/plain": [
         | 
| 740 | 
            +
                   "<Document: {'content': 'ุนููุงู: ู
ุทุนู
 ุนุดุงุก ูุงุฑูู. ูุทูุจ ู
ู ุงูู
ูุธููู ุงุฑุชุฏุงุก ุดุฎุตูุฉ ููุญุฉ ูุงูุณุฎุฑูุฉ ู
ู ุงูุนู
ูุงุก ุจุดูู ูุฒูู ุงุซูุงุก ุชูุงูู ูุฌุจุงุชูู
 ูู
ู ุงูู
ุชููุน ุงู ูุนูุฏ ุงูุนู
ูุงุก ูุฐุง ุงูุณููู ู
ู ุฎูุงู ุงูุชุตุฑู ุจููุงุญุฉ ุชุฌุงู ุงูู
ูุธููู ูู
ุน ุฐูู ููุญุธุฑ ุนูู ุงูุนู
ูุงุก ูุงูู
ูุธููู ุงุณุชุฎุฏุงู
 ุงูุฅูุงูุงุช ุงูุนูุตุฑูุฉ ุฃู ุงูุชุญูุฒ ุงูุฌูุณู ุฃู ุฑูุงุจ ุงูู
ุซููุฉ ุงูุฌูุณูุฉ.\\nุชุชุถู
ู ุงูุนุฏูุฏ ู
ู ูุฐู ุงูุชุจุงุฏูุงุช ูุบุฉ ูุงุจูุฉ ููุฌุจ ุงู ูููู ุจุฑููุฉ ุงูุงุดุฎุงุต ุงููุฐูู ููููู ุนู 16 ุนุงู
ุงูู ุจุงูุบูู.\\nูู
ุง ูู
ูู ูู
ุงููู ุจุทุงูุฉ ูููุฉ ุชุธูุฑ ุงู ุงุณู
ูู
 ูุงุฑูู ุงูุญุตูู ุนูู ู
ุดุฑูุจ ู
ุฌุงูู.\\nูุฑุชูุฒ ุงูู
ุทุนู
 ุนูู ูุฌุจุงุช ุงูุนุดุงุก ุงูุฃู
ุฑูููุฉ ูู ุฎู
ุณููุงุช ุงููุฑู ุงูู
ุงุถู ูุชุชู
ูุฒ ุงููุงุฆู
ุฉ ุจุงููุงู
ุจุฑุบุฑ ูุฃุฌูุญุฉ ุงูุฏุฌุงุฌ.\\nุฃุตุจุญ ู
ุญุชูู ุดุงุฆุน ููุณุงุฆู ุงูุชูุงุตู ุงูุฅุฌุชู
ุงุนู ุฎุตูุตุงู ุนูู ู
ูุตุฉ (ุชูู ุชูู) ุญูุซ ูุดุฑ ุงูุนู
ูุงุก ู
ูุงุทุน ููุฏูู ูุชูุงุนูุงุชูู
 ู
ุน ุงูู
ูุธููู.\\nูุชุญุช ุงูุณูุณูุฉ ูู ู
ูุงูุน ูู ุงูู
ู
ููุฉ ุงูู
ุชุญุฏุฉ ูุงูููุงูุงุช ุงูู
ุชุญุฏุฉ ููููุฒูููุฏุง.\\nูู ุดูุฑ ุฃุบุณุทุณ ุณูุฉ 2022 ุงุซุงุฑ ุงูู
ุทุนู
 ุฌุฏูุงู ุจุนุฏ ุงู ุงูุชุดุฑ ู
ูุทุน ููุธูุฑ ููู ุฃุญุฏ ู
ูุธูู ูุฑูู ุงูุนู
ู ูู ู
ูุทูุฉ ุจุฑูุฒุจูู ูุชุตุฑู ุจุดูู ุบูุฑ ูุงุฆู ุนูู ู
ูุตุฉ ุชูู ุชูู ุญูุซ ุงููู ุชุนูููุงุช ุบูุฑ ูุงุฆูุฉ ู
ูุฌูุฉ ุฅูู ุฒุจููุฉ ูุงุตุฑ ููุงูุฏูุง ุงูุฐู ูุงู ูุดุงุฑููุง ุงูุทุนุงู
 ุจุฅุชูุงู
ู ุงูู ูู
ุงุฑุณ ุงูุฑุฐููุฉ ู
ุน ุงูุฃุทูุงูุ ููุงู
 ุงูู
ุชุญุฏุซ ุจุงุณู
 ุงูุณูุณูุฉ ุจุงูุฑุฏ ุจุฅููู
 ุงุตูุจู ุจุฎูุจุฉ ุฃู
ู ุจุณุจุจ ุงูุณููู ูุฃู ุงูุญุงุฏุซ ูุชุนุงุฑุถ ู
ุน ุฅุฑุดุงุฏุงุชูู
.', 'content_type': 'text', 'score': None, 'meta': {'id': '8974231', 'revid': '593870', 'url': 'https://ar.wikipedia.org/wiki?curid=8974231', 'title': 'ู
ุทุนู
 ุนุดุงุก ูุงุฑูู', '_split_id': 1, '_split_overlap': [{'doc_id': '1af84f3b4cc6a9f1018f2f80b4fd3ba7', 'range': (0, 435)}]}, 'id_hash_keys': ['content'], 'embedding': None, 'id': '288196225044b53e6ff86f2485257a0a'}>"
         | 
| 741 | 
            +
                  ]
         | 
| 742 | 
            +
                 },
         | 
| 743 | 
            +
                 "execution_count": 12,
         | 
| 744 | 
            +
                 "metadata": {},
         | 
| 745 | 
            +
                 "output_type": "execute_result"
         | 
| 746 | 
            +
                }
         | 
| 747 | 
            +
               ],
         | 
| 748 | 
            +
               "source": [
         | 
| 749 | 
            +
                "documents[1]"
         | 
| 750 | 
            +
               ]
         | 
| 751 | 
            +
              },
         | 
| 752 | 
            +
              {
         | 
| 753 | 
            +
               "cell_type": "code",
         | 
| 754 | 
            +
               "execution_count": 13,
         | 
| 755 | 
            +
               "id": "e6f50c27-a486-47e9-ba60-d567f5e530db",
         | 
| 756 | 
            +
               "metadata": {
         | 
| 757 | 
            +
                "tags": []
         | 
| 758 | 
            +
               },
         | 
| 759 | 
            +
               "outputs": [
         | 
| 760 | 
            +
                {
         | 
| 761 | 
            +
                 "data": {
         | 
| 762 | 
            +
                  "text/plain": [
         | 
| 763 | 
            +
                   "<Document: {'content': 'ูููููุงู ููููุง ูุงูู
ุนุฑูู ุฃูุถูุง ุจุงุณู
 ูููู ููููุง (1840 - 4 ุฃุบุณุทุณ ุนุงู
 1920) ูู ุณูุงุณู ูุตุญูู ุณูุงุณู ูู
ุญุงู
ู ุฃููุงูู ูู
ู ุซู
 ุฑูู
ุงูู. ุงุดุชูุฑ ุจุงูุฎุฑุงุทู ูู ุงูู
ุฌุฑูุงุช ุงูุณูุงุณูุฉ ููุฒุนุชู ุงููุทููุฉ ุงูุตุฑูุญุฉ ุงูุชู ูุงุฏุช ุชุตู ุฅูู ุญุฏ ุงูุฏูู
ุงุบูุฌูุฉ. ุงุฎุชุจุฑ ูุงูุฉ ุงูุตูุบ ุงูุณูุงุณูุฉ ุงูุชู ูุณู
ุญ ุจูุง ูุธุงู
 ุงูุญุฒุจูู ูู ุฑูู
ุงููุง. ุฏุงู
 ุญุถูุฑู ุนูู ุงูุณุงุญุฉ ุงูุนุงู
ุฉ ุนููุฏูุง ู
ู ุงูุฒู
ูุ ุดุบู ุฎูุงููุง ู
ูุนุฏูุง ูู ุฌู
ุนูุฉ ุงูููุงุจ ูุชููู ู
ูุตุจ ุนู
ุฏุฉ ู
ุฏููุฉ ุจูุฎุงุฑุณุช ุฎูุงู ุงููุชุฑุฉ ุงูู
ู
ุชุฏุฉ ู
ู ุนุงู
 1884 ุญุชู ุนุงู
 1886.\\nุจุงุดุฑ ููููุง ู
ุณูุฑุชู ุงูุณูุงุณูุฉ ู
ุน ุงูุญุฒุจ ุงูููุจุฑุงูู ุงููุทูู ุงูุฐู ุณุงุนุฏ ุนูู ุชุฃุณูุณู ูุชู
ุซููู ุฃู
ุงู
 ุงููุถุงุกุ ููููู ุงุชุฌู ูู ู
ุง ุจุนุฏ ุฅูู ู
ุนุงุฑุถุฉ ุงุญุชูุงุฑ ุงูุญุฒุจ ููุณูุทุฉ. ุญุงูู ุฅูุดุงุก ุญุฒุจ ุซุงูุซ ูุฏุฎู ูู ู
ูุงูุถุงุช ู
ู ุฃุฌู ุงุนุชู
ุงุฏ ุจุฑุงู
ุฌ ุณูุงุณูุฉ ู
ุดุชุฑูุฉ ุฎุงุตุฉ ุจููู ุงูู
ุนุงุฑุถุฉ ุงูู
ุฎุชููุฉ ูู
ู ุจูููุง ุญุฒุจ ุงูู
ุญุงูุธูู ูุฌู
ุนูุฉ ุฌูููู
ุง ูู ุธู ุงูุฅุฏุงุฑุงุช ุงูููุจุฑุงููุฉ ุงููุทููุฉ ุงูู
ุชุนุงูุจุฉ. ุฐุงุน ุตูุชู ุนูุฏู
ุง ุชูุฑุท ูู ูุถูุญุชูู ูุจูุฑุชูู ุฎูุงู ุซู
ุงููููุงุช ุงููุฑู ุงูุชุงุณุน ุนุดุฑ ุญูู ุฃุฏู ุงุณุชูุฒุงุฆู ุจุณูุทุฉ ุงูุญุฒุจ ุงูููุจุฑุงูู ุงููุทูู ุฅูู ุงูุฏูุงุน ู
ุนุงุฑู ูู ุงูุดูุงุฑุน ููููุน ุญุงุฏุซุชู ุฅุทูุงู ุงููุงุฑ ู
ููุตูุชูู. ุงุนุชูุจุฑุช ุงูุฌู
ุงุนุงุช ุงูู
ูุงููุฉ ูููููุง ุงูุตูุช ุงูุฑุงุฆุฏ ุงูู
ุนุจุฑ ุนู ุณุฎุท ุงูุทุจูุฉ ุงููุณุทู ููุชุฐุงูุ ูุดููุช ุฅุญุฏู ุงูุชูุงุฑุงุช ุงูุชู ุฏูุนุช ุจุงุชุฌุงู ุชุจูู ุญู ุงูุงูุชุฑุงุน ุงูุนุงู
 ููุฐููุฑ.\\nุนุงุฏ ููููุง ุฅูู ุงูู
ุนุณูุฑ ุงูููุจุฑุงูู ุงููุทูู ุจุนุฏ ู
ูุนู ู
ู ุชููู ุญูุงุฆุจ ูุฒุงุฑูุฉ ุฑูุงุฏูุฉ ูู ุงูุญููู
ุงุช ุงูู
ุญุงูุธุฉุ ูุฃุตุจุญ ูุฒูุฑูุง ููุดุคูู ุงูุฏุงุฎููุฉ ุฎูุงู ุงููุชุฑุฉ ู
ู ุนุงู
 1895 ุญุชู ุนุงู
 1896. ', 'content_type': 'text', 'score': None, 'meta': {'id': '9044009', 'revid': '1673186', 'url': 'https://ar.wikipedia.org/wiki?curid=9044009', 'title': 'ูููููุงู ููููุง', '_split_id': 0, '_split_overlap': [{'doc_id': '188181b1026773d720383c7e7307b241', 'range': (943, 1257)}]}, 'id_hash_keys': ['content'], 'embedding': None, 'id': 'af5cda4722fa2a961bef66de8a6b3e17'}>"
         | 
| 764 | 
            +
                  ]
         | 
| 765 | 
            +
                 },
         | 
| 766 | 
            +
                 "execution_count": 13,
         | 
| 767 | 
            +
                 "metadata": {},
         | 
| 768 | 
            +
                 "output_type": "execute_result"
         | 
| 769 | 
            +
                }
         | 
| 770 | 
            +
               ],
         | 
| 771 | 
            +
               "source": [
         | 
| 772 | 
            +
                "documents[10102]"
         | 
| 773 | 
            +
               ]
         | 
| 774 | 
            +
              },
         | 
| 775 | 
            +
              {
         | 
| 776 | 
            +
               "cell_type": "code",
         | 
| 777 | 
            +
               "execution_count": 14,
         | 
| 778 | 
            +
               "id": "5485cc27-3d3f-4b96-8884-accf5324da2d",
         | 
| 779 | 
            +
               "metadata": {
         | 
| 780 | 
            +
                "tags": []
         | 
| 781 | 
            +
               },
         | 
| 782 | 
            +
               "outputs": [
         | 
| 783 | 
            +
                {
         | 
| 784 | 
            +
                 "name": "stdout",
         | 
| 785 | 
            +
                 "output_type": "stream",
         | 
| 786 | 
            +
                 "text": [
         | 
| 787 | 
            +
                  "2094596\n"
         | 
| 788 | 
            +
                 ]
         | 
| 789 | 
            +
                }
         | 
| 790 | 
            +
               ],
         | 
| 791 | 
            +
               "source": [
         | 
| 792 | 
            +
                "!cat \"$folder_out_str\"/*.ndjson | wc -l"
         | 
| 793 | 
            +
               ]
         | 
| 794 | 
            +
              },
         | 
| 795 | 
            +
              {
         | 
| 796 | 
            +
               "cell_type": "code",
         | 
| 797 | 
            +
               "execution_count": null,
         | 
| 798 | 
            +
               "id": "c5833dba-1bf6-48aa-be6f-0d70c71e54aa",
         | 
| 799 | 
            +
               "metadata": {},
         | 
| 800 | 
            +
               "outputs": [],
         | 
| 801 | 
            +
               "source": []
         | 
| 802 | 
            +
              }
         | 
| 803 | 
            +
             ],
         | 
| 804 | 
            +
             "metadata": {
         | 
| 805 | 
            +
              "kernelspec": {
         | 
| 806 | 
            +
               "display_name": "Python 3 (ipykernel)",
         | 
| 807 | 
            +
               "language": "python",
         | 
| 808 | 
            +
               "name": "python3"
         | 
| 809 | 
            +
              },
         | 
| 810 | 
            +
              "language_info": {
         | 
| 811 | 
            +
               "codemirror_mode": {
         | 
| 812 | 
            +
                "name": "ipython",
         | 
| 813 | 
            +
                "version": 3
         | 
| 814 | 
            +
               },
         | 
| 815 | 
            +
               "file_extension": ".py",
         | 
| 816 | 
            +
               "mimetype": "text/x-python",
         | 
| 817 | 
            +
               "name": "python",
         | 
| 818 | 
            +
               "nbconvert_exporter": "python",
         | 
| 819 | 
            +
               "pygments_lexer": "ipython3",
         | 
| 820 | 
            +
               "version": "3.10.13"
         | 
| 821 | 
            +
              }
         | 
| 822 | 
            +
             },
         | 
| 823 | 
            +
             "nbformat": 4,
         | 
| 824 | 
            +
             "nbformat_minor": 5
         | 
| 825 | 
            +
            }
         | 
    	
        notebooks/04_get_embeddings.ipynb
    ADDED
    
    | @@ -0,0 +1,926 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
             "cells": [
         | 
| 3 | 
            +
              {
         | 
| 4 | 
            +
               "cell_type": "markdown",
         | 
| 5 | 
            +
               "id": "a0f21cb1-fbc8-4282-b902-f47d92974df8",
         | 
| 6 | 
            +
               "metadata": {},
         | 
| 7 | 
            +
               "source": [
         | 
| 8 | 
            +
                "# Pre-requisites"
         | 
| 9 | 
            +
               ]
         | 
| 10 | 
            +
              },
         | 
| 11 | 
            +
              {
         | 
| 12 | 
            +
               "cell_type": "markdown",
         | 
| 13 | 
            +
               "id": "5f625807-0707-4e2f-a0e0-8fbcdf08c865",
         | 
| 14 | 
            +
               "metadata": {},
         | 
| 15 | 
            +
               "source": [
         | 
| 16 | 
            +
                "## Why TEI\n",
         | 
| 17 | 
            +
                "There are 2 **unsung** challenges with RAG at scale:\n",
         | 
| 18 | 
            +
                "1. Getting the embeddings efficiently\n",
         | 
| 19 | 
            +
                "1. Efficient ingestion into the vector DB\n",
         | 
| 20 | 
            +
                "\n",
         | 
| 21 | 
            +
                "The issue with `1.` is that there are techniques but they are not widely *applied*. TEI solves a number of aspects:\n",
         | 
| 22 | 
            +
                "- Token Based Dynamic Batching\n",
         | 
| 23 | 
            +
                "- Using latest optimizations (Flash Attention, Candle and cuBLASLt)\n",
         | 
| 24 | 
            +
                "- Fast loading with safetensors\n",
         | 
| 25 | 
            +
                "\n",
         | 
| 26 | 
            +
                "The issue with `2.` is that it takes a bit of planning. We wont go much into that side of things here though."
         | 
| 27 | 
            +
               ]
         | 
| 28 | 
            +
              },
         | 
| 29 | 
            +
              {
         | 
| 30 | 
            +
               "cell_type": "markdown",
         | 
| 31 | 
            +
               "id": "3102abce-ea42-4da6-8c98-c6dd4edf7f0b",
         | 
| 32 | 
            +
               "metadata": {},
         | 
| 33 | 
            +
               "source": [
         | 
| 34 | 
            +
                "## Start TEI Locally\n",
         | 
| 35 | 
            +
                "Run [TEI](https://github.com/huggingface/text-embeddings-inference#docker), I have this running in a nvidia-docker container, but you can install as you like. Note that I ran this in a different terminal for monitoring and seperation. \n",
         | 
| 36 | 
            +
                "\n",
         | 
| 37 | 
            +
                "Note that as its running, its always going to pull the latest. Its at a very early stage at the time of writing. \n",
         | 
| 38 | 
            +
                "\n",
         | 
| 39 | 
            +
                "I chose [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) based on the STS ar-ar performance on [mteb/leaderboard](https://huggingface.co/spaces/mteb/leaderboard), its the top performer and half the size of second place! TEI is fast, but this will make our life easier for storage and retrieval.\n",
         | 
| 40 | 
            +
                "\n",
         | 
| 41 | 
            +
                "I use the `revision=refs/pr/8` because this has the pull request with [safetensors](https://github.com/huggingface/safetensors) which is required by TEI. Check out the [pull request](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/discussions/8) if you want to use a different embedding model and it doesnt have safetensors."
         | 
| 42 | 
            +
               ]
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              {
         | 
| 45 | 
            +
               "cell_type": "code",
         | 
| 46 | 
            +
               "execution_count": null,
         | 
| 47 | 
            +
               "id": "7e873652-8257-4aae-92bc-94e1bac54b73",
         | 
| 48 | 
            +
               "metadata": {
         | 
| 49 | 
            +
                "tags": []
         | 
| 50 | 
            +
               },
         | 
| 51 | 
            +
               "outputs": [],
         | 
| 52 | 
            +
               "source": [
         | 
| 53 | 
            +
                "%%bash\n",
         | 
| 54 | 
            +
                "\n",
         | 
| 55 | 
            +
                "# volume=$pwd/tei\n",
         | 
| 56 | 
            +
                "# model=sentence-transformers/paraphrase-multilingual-minilm-l12-v2\n",
         | 
| 57 | 
            +
                "# revision=refs/pr/8\n",
         | 
| 58 | 
            +
                "# docker run \\\n",
         | 
| 59 | 
            +
                "#     --gpus all \\\n",
         | 
| 60 | 
            +
                "#     -p 8080:80 \\\n",
         | 
| 61 | 
            +
                "#     -v $volume:/data \\\n",
         | 
| 62 | 
            +
                "#     -v /home/ec2-user/.cache/huggingface/token:/root/.cache/huggingface/token \\\n",
         | 
| 63 | 
            +
                "#     --pull always \\\n",
         | 
| 64 | 
            +
                "#     ghcr.io/huggingface/text-embeddings-inference:latest \\\n",
         | 
| 65 | 
            +
                "#     --model-id $model \\\n",
         | 
| 66 | 
            +
                "#     --revision $revision \\\n",
         | 
| 67 | 
            +
                "#     --pooling mean \\\n",
         | 
| 68 | 
            +
                "#     --max-batch-tokens 65536"
         | 
| 69 | 
            +
               ]
         | 
| 70 | 
            +
              },
         | 
| 71 | 
            +
              {
         | 
| 72 | 
            +
               "cell_type": "markdown",
         | 
| 73 | 
            +
               "id": "51959ef4-186e-4a32-826a-731813eaf593",
         | 
| 74 | 
            +
               "metadata": {},
         | 
| 75 | 
            +
               "source": [
         | 
| 76 | 
            +
                "### Test Endpoint"
         | 
| 77 | 
            +
               ]
         | 
| 78 | 
            +
              },
         | 
| 79 | 
            +
              {
         | 
| 80 | 
            +
               "cell_type": "code",
         | 
| 81 | 
            +
               "execution_count": null,
         | 
| 82 | 
            +
               "id": "52edfc97-5b6f-44f9-8d89-8578cf79fae9",
         | 
| 83 | 
            +
               "metadata": {
         | 
| 84 | 
            +
                "tags": []
         | 
| 85 | 
            +
               },
         | 
| 86 | 
            +
               "outputs": [],
         | 
| 87 | 
            +
               "source": [
         | 
| 88 | 
            +
                "%%bash\n",
         | 
| 89 | 
            +
                "\n",
         | 
| 90 | 
            +
                "# response_code=$(curl -s -o /dev/null -w \"%{http_code}\" 127.0.0.1:8080/embed \\\n",
         | 
| 91 | 
            +
                "#     -X POST \\\n",
         | 
| 92 | 
            +
                "#     -d '{\"inputs\":\"What is Deep Learning?\"}' \\\n",
         | 
| 93 | 
            +
                "#     -H 'Content-Type: application/json')\n",
         | 
| 94 | 
            +
                "\n",
         | 
| 95 | 
            +
                "# if [ \"$response_code\" -eq 200 ]; then\n",
         | 
| 96 | 
            +
                "#     echo \"passed\"\n",
         | 
| 97 | 
            +
                "# else\n",
         | 
| 98 | 
            +
                "#     echo \"failed\"\n",
         | 
| 99 | 
            +
                "# fi"
         | 
| 100 | 
            +
               ]
         | 
| 101 | 
            +
              },
         | 
| 102 | 
            +
              {
         | 
| 103 | 
            +
               "cell_type": "markdown",
         | 
| 104 | 
            +
               "id": "e9d6b54a-02bd-49aa-b180-27a7ab90154e",
         | 
| 105 | 
            +
               "metadata": {},
         | 
| 106 | 
            +
               "source": [
         | 
| 107 | 
            +
                "## Start TEI with Inference Endpoints\n",
         | 
| 108 | 
            +
                "Another option is to run TEI on Inference Endpoints. Its cheap and fast. It took me less than 5 minutes to get it up and running!\n",
         | 
| 109 | 
            +
                "\n",
         | 
| 110 | 
            +
                "Check here for a [guide](https://huggingface.co/blog/inference-endpoints-embeddings#3-deploy-embedding-model-as-inference-endpoint). Make sure to set these options in order:\n",
         | 
| 111 | 
            +
                "1. Model Repository = transformers/paraphrase-multilingual-minilm-l12-v2\n",
         | 
| 112 | 
            +
                "1. Name your endpoint\n",
         | 
| 113 | 
            +
                "1. Choose a GPU\n",
         | 
| 114 | 
            +
                "1. Advanced Configuration\n",
         | 
| 115 | 
            +
                "    1. Task = Sentence Embeddings\n",
         | 
| 116 | 
            +
                "    1. Revision (based on [this pull request for safetensors](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/discussions/8) = a21e6630\n",
         | 
| 117 | 
            +
                "    1. Container Type = Text Embeddings Inference\n",
         | 
| 118 | 
            +
                "    \n",
         | 
| 119 | 
            +
                "Set the other options as you prefer."
         | 
| 120 | 
            +
               ]
         | 
| 121 | 
            +
              },
         | 
| 122 | 
            +
              {
         | 
| 123 | 
            +
               "cell_type": "markdown",
         | 
| 124 | 
            +
               "id": "ec78c98a-6b7b-4689-8ef8-582c3fcdf66e",
         | 
| 125 | 
            +
               "metadata": {},
         | 
| 126 | 
            +
               "source": [
         | 
| 127 | 
            +
                "### Test Endpoint"
         | 
| 128 | 
            +
               ]
         | 
| 129 | 
            +
              },
         | 
| 130 | 
            +
              {
         | 
| 131 | 
            +
               "cell_type": "code",
         | 
| 132 | 
            +
               "execution_count": 1,
         | 
| 133 | 
            +
               "id": "a69e2ee1-67f2-4f0a-b496-02f5415a52ca",
         | 
| 134 | 
            +
               "metadata": {
         | 
| 135 | 
            +
                "tags": []
         | 
| 136 | 
            +
               },
         | 
| 137 | 
            +
               "outputs": [
         | 
| 138 | 
            +
                {
         | 
| 139 | 
            +
                 "name": "stdin",
         | 
| 140 | 
            +
                 "output_type": "stream",
         | 
| 141 | 
            +
                 "text": [
         | 
| 142 | 
            +
                  "What is your BEARER TOKEN? Check your endpoint. ยทยทยทยทยทยทยทยท\n",
         | 
| 143 | 
            +
                  "What is your API_URL? ยทยทยทยทยทยทยทยท\n"
         | 
| 144 | 
            +
                 ]
         | 
| 145 | 
            +
                }
         | 
| 146 | 
            +
               ],
         | 
| 147 | 
            +
               "source": [
         | 
| 148 | 
            +
                "import getpass\n",
         | 
| 149 | 
            +
                "bearer_token = getpass.getpass(prompt='What is your BEARER TOKEN? Check your endpoint.')\n",
         | 
| 150 | 
            +
                "API_URL = getpass.getpass(prompt='What is your API_URL?')"
         | 
| 151 | 
            +
               ]
         | 
| 152 | 
            +
              },
         | 
| 153 | 
            +
              {
         | 
| 154 | 
            +
               "cell_type": "code",
         | 
| 155 | 
            +
               "execution_count": 2,
         | 
| 156 | 
            +
               "id": "949d6bf8-804f-496b-a59a-834483cc7073",
         | 
| 157 | 
            +
               "metadata": {
         | 
| 158 | 
            +
                "tags": []
         | 
| 159 | 
            +
               },
         | 
| 160 | 
            +
               "outputs": [],
         | 
| 161 | 
            +
               "source": [
         | 
| 162 | 
            +
                "# Constants\n",
         | 
| 163 | 
            +
                "HEADERS = {\n",
         | 
| 164 | 
            +
                "\t\"Authorization\": f\"Bearer {bearer_token}\",\n",
         | 
| 165 | 
            +
                "\t\"Content-Type\": \"application/json\"\n",
         | 
| 166 | 
            +
                "}\n",
         | 
| 167 | 
            +
                "MAX_WORKERS = 512"
         | 
| 168 | 
            +
               ]
         | 
| 169 | 
            +
              },
         | 
| 170 | 
            +
              {
         | 
| 171 | 
            +
               "cell_type": "code",
         | 
| 172 | 
            +
               "execution_count": 3,
         | 
| 173 | 
            +
               "id": "d00b4af1-8fbc-4f7a-8a78-e1c52dd77a66",
         | 
| 174 | 
            +
               "metadata": {
         | 
| 175 | 
            +
                "tags": []
         | 
| 176 | 
            +
               },
         | 
| 177 | 
            +
               "outputs": [
         | 
| 178 | 
            +
                {
         | 
| 179 | 
            +
                 "name": "stdout",
         | 
| 180 | 
            +
                 "output_type": "stream",
         | 
| 181 | 
            +
                 "text": [
         | 
| 182 | 
            +
                  "[0.0047912598, -0.03164673, -0.018051147, -0.057739258, -0.04498291]...\n"
         | 
| 183 | 
            +
                 ]
         | 
| 184 | 
            +
                }
         | 
| 185 | 
            +
               ],
         | 
| 186 | 
            +
               "source": [
         | 
| 187 | 
            +
                "import requests\n",
         | 
| 188 | 
            +
                "\n",
         | 
| 189 | 
            +
                "\n",
         | 
| 190 | 
            +
                "def query(payload):\n",
         | 
| 191 | 
            +
                "\tresponse = requests.post(API_URL, headers=HEADERS, json=payload)\n",
         | 
| 192 | 
            +
                "\treturn response.json()\n",
         | 
| 193 | 
            +
                "\t\n",
         | 
| 194 | 
            +
                "output = query({\n",
         | 
| 195 | 
            +
                "\t\"inputs\": \"This sound track was beautiful! It paints the senery in your mind so well I would recomend it even to people who hate vid. game music!\",\n",
         | 
| 196 | 
            +
                "})\n",
         | 
| 197 | 
            +
                "print(f'{output[0][:5]}...')"
         | 
| 198 | 
            +
               ]
         | 
| 199 | 
            +
              },
         | 
| 200 | 
            +
              {
         | 
| 201 | 
            +
               "cell_type": "markdown",
         | 
| 202 | 
            +
               "id": "b1b28232-b65d-41ce-88de-fd70b93a528d",
         | 
| 203 | 
            +
               "metadata": {},
         | 
| 204 | 
            +
               "source": [
         | 
| 205 | 
            +
                "# Imports"
         | 
| 206 | 
            +
               ]
         | 
| 207 | 
            +
              },
         | 
| 208 | 
            +
              {
         | 
| 209 | 
            +
               "cell_type": "code",
         | 
| 210 | 
            +
               "execution_count": 4,
         | 
| 211 | 
            +
               "id": "abb5186b-ee67-4e1e-882d-3d8d5b4575d4",
         | 
| 212 | 
            +
               "metadata": {
         | 
| 213 | 
            +
                "tags": []
         | 
| 214 | 
            +
               },
         | 
| 215 | 
            +
               "outputs": [],
         | 
| 216 | 
            +
               "source": [
         | 
| 217 | 
            +
                "import asyncio\n",
         | 
| 218 | 
            +
                "from pathlib import Path\n",
         | 
| 219 | 
            +
                "import json\n",
         | 
| 220 | 
            +
                "import time\n",
         | 
| 221 | 
            +
                "\n",
         | 
| 222 | 
            +
                "\n",
         | 
| 223 | 
            +
                "from aiohttp import ClientSession, ClientTimeout\n",
         | 
| 224 | 
            +
                "from tqdm.notebook import tqdm"
         | 
| 225 | 
            +
               ]
         | 
| 226 | 
            +
              },
         | 
| 227 | 
            +
              {
         | 
| 228 | 
            +
               "cell_type": "code",
         | 
| 229 | 
            +
               "execution_count": 5,
         | 
| 230 | 
            +
               "id": "c4b82ea2-8b30-4c2e-99f0-9a30f2f1bfb7",
         | 
| 231 | 
            +
               "metadata": {
         | 
| 232 | 
            +
                "tags": []
         | 
| 233 | 
            +
               },
         | 
| 234 | 
            +
               "outputs": [
         | 
| 235 | 
            +
                {
         | 
| 236 | 
            +
                 "name": "stdout",
         | 
| 237 | 
            +
                 "output_type": "stream",
         | 
| 238 | 
            +
                 "text": [
         | 
| 239 | 
            +
                  "/home/ec2-user/arabic-wiki\n"
         | 
| 240 | 
            +
                 ]
         | 
| 241 | 
            +
                }
         | 
| 242 | 
            +
               ],
         | 
| 243 | 
            +
               "source": [
         | 
| 244 | 
            +
                "proj_dir = Path.cwd().parent\n",
         | 
| 245 | 
            +
                "print(proj_dir)"
         | 
| 246 | 
            +
               ]
         | 
| 247 | 
            +
              },
         | 
| 248 | 
            +
              {
         | 
| 249 | 
            +
               "cell_type": "markdown",
         | 
| 250 | 
            +
               "id": "76119e74-f601-436d-a253-63c5a19d1c83",
         | 
| 251 | 
            +
               "metadata": {},
         | 
| 252 | 
            +
               "source": [
         | 
| 253 | 
            +
                "# Config"
         | 
| 254 | 
            +
               ]
         | 
| 255 | 
            +
              },
         | 
| 256 | 
            +
              {
         | 
| 257 | 
            +
               "cell_type": "code",
         | 
| 258 | 
            +
               "execution_count": 6,
         | 
| 259 | 
            +
               "id": "f6f74545-54a7-4f41-9f02-96964e1417f0",
         | 
| 260 | 
            +
               "metadata": {
         | 
| 261 | 
            +
                "tags": []
         | 
| 262 | 
            +
               },
         | 
| 263 | 
            +
               "outputs": [],
         | 
| 264 | 
            +
               "source": [
         | 
| 265 | 
            +
                "files_in = list((proj_dir / 'data/processed/').glob('*.ndjson'))\n",
         | 
| 266 | 
            +
                "folder_out = proj_dir / 'data/embedded/'"
         | 
| 267 | 
            +
               ]
         | 
| 268 | 
            +
              },
         | 
| 269 | 
            +
              {
         | 
| 270 | 
            +
               "cell_type": "markdown",
         | 
| 271 | 
            +
               "id": "5e73235d-6274-4958-9e57-977afeeb5f1b",
         | 
| 272 | 
            +
               "metadata": {},
         | 
| 273 | 
            +
               "source": [
         | 
| 274 | 
            +
                "# Embed\n",
         | 
| 275 | 
            +
                "## Strategy\n",
         | 
| 276 | 
            +
                "TEI allows multiple concurrent requests, so its important that we dont waste the potential we have. I used the default `max-concurrent-requests` value of `512`, so I want to use that many `MAX_WORKERS`.\n",
         | 
| 277 | 
            +
                "\n",
         | 
| 278 | 
            +
                "Im using an `async` way of making requests that uses `aiohttp` as well as a nice progress bar. "
         | 
| 279 | 
            +
               ]
         | 
| 280 | 
            +
              },
         | 
| 281 | 
            +
              {
         | 
| 282 | 
            +
               "cell_type": "markdown",
         | 
| 283 | 
            +
               "id": "cf3da8cc-1651-4704-9091-39c2a1b835be",
         | 
| 284 | 
            +
               "metadata": {},
         | 
| 285 | 
            +
               "source": [
         | 
| 286 | 
            +
                "Note that Im using `'truncate':True` as even with our `350` word split earlier, there are always exceptions. Its important that as this scales we have as few issues as possible when embedding. "
         | 
| 287 | 
            +
               ]
         | 
| 288 | 
            +
              },
         | 
| 289 | 
            +
              {
         | 
| 290 | 
            +
               "cell_type": "code",
         | 
| 291 | 
            +
               "execution_count": 7,
         | 
| 292 | 
            +
               "id": "e455dd52-aad3-4313-8738-03141ee5152a",
         | 
| 293 | 
            +
               "metadata": {
         | 
| 294 | 
            +
                "tags": []
         | 
| 295 | 
            +
               },
         | 
| 296 | 
            +
               "outputs": [],
         | 
| 297 | 
            +
               "source": [
         | 
| 298 | 
            +
                "async def request(document, semaphore):\n",
         | 
| 299 | 
            +
                "    # Semaphore guard\n",
         | 
| 300 | 
            +
                "    async with semaphore:\n",
         | 
| 301 | 
            +
                "        payload = {\n",
         | 
| 302 | 
            +
                "            \"inputs\": document['content'],\n",
         | 
| 303 | 
            +
                "            \"truncate\": True\n",
         | 
| 304 | 
            +
                "        }\n",
         | 
| 305 | 
            +
                "        \n",
         | 
| 306 | 
            +
                "        timeout = ClientTimeout(total=10)  # Set a timeout for requests (10 seconds here)\n",
         | 
| 307 | 
            +
                "\n",
         | 
| 308 | 
            +
                "        async with ClientSession(timeout=timeout, headers=HEADERS) as session:\n",
         | 
| 309 | 
            +
                "            async with session.post(API_URL, json=payload) as resp:\n",
         | 
| 310 | 
            +
                "                if resp.status != 200:\n",
         | 
| 311 | 
            +
                "                    raise RuntimeError(await resp.text())\n",
         | 
| 312 | 
            +
                "                result = await resp.json()\n",
         | 
| 313 | 
            +
                "                \n",
         | 
| 314 | 
            +
                "        document['embedding'] = result[0]  # Assuming the API's output can be directly assigned\n",
         | 
| 315 | 
            +
                "        return document\n",
         | 
| 316 | 
            +
                "\n",
         | 
| 317 | 
            +
                "async def main(documents):\n",
         | 
| 318 | 
            +
                "    # Semaphore to limit concurrent requests. Adjust the number as needed.\n",
         | 
| 319 | 
            +
                "    semaphore = asyncio.BoundedSemaphore(512)\n",
         | 
| 320 | 
            +
                "\n",
         | 
| 321 | 
            +
                "    # Creating a list of tasks\n",
         | 
| 322 | 
            +
                "    tasks = [request(document, semaphore) for document in documents]\n",
         | 
| 323 | 
            +
                "    \n",
         | 
| 324 | 
            +
                "    # Using tqdm to show progress. It's been integrated into the async loop.\n",
         | 
| 325 | 
            +
                "    for f in tqdm(asyncio.as_completed(tasks), total=len(documents)):\n",
         | 
| 326 | 
            +
                "        await f\n"
         | 
| 327 | 
            +
               ]
         | 
| 328 | 
            +
              },
         | 
| 329 | 
            +
              {
         | 
| 330 | 
            +
               "cell_type": "code",
         | 
| 331 | 
            +
               "execution_count": 11,
         | 
| 332 | 
            +
               "id": "f0d17264-72dc-40be-aa46-17cde38c8189",
         | 
| 333 | 
            +
               "metadata": {
         | 
| 334 | 
            +
                "tags": []
         | 
| 335 | 
            +
               },
         | 
| 336 | 
            +
               "outputs": [
         | 
| 337 | 
            +
                {
         | 
| 338 | 
            +
                 "data": {
         | 
| 339 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 340 | 
            +
                   "model_id": "1db8949409284a7cbeec2638ed197f59",
         | 
| 341 | 
            +
                   "version_major": 2,
         | 
| 342 | 
            +
                   "version_minor": 0
         | 
| 343 | 
            +
                  },
         | 
| 344 | 
            +
                  "text/plain": [
         | 
| 345 | 
            +
                   "0it [00:00, ?it/s]"
         | 
| 346 | 
            +
                  ]
         | 
| 347 | 
            +
                 },
         | 
| 348 | 
            +
                 "metadata": {},
         | 
| 349 | 
            +
                 "output_type": "display_data"
         | 
| 350 | 
            +
                },
         | 
| 351 | 
            +
                {
         | 
| 352 | 
            +
                 "data": {
         | 
| 353 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 354 | 
            +
                   "model_id": "5945500ccf8649988918e2633269cb7b",
         | 
| 355 | 
            +
                   "version_major": 2,
         | 
| 356 | 
            +
                   "version_minor": 0
         | 
| 357 | 
            +
                  },
         | 
| 358 | 
            +
                  "text/plain": [
         | 
| 359 | 
            +
                   "  0%|          | 0/243068 [00:00<?, ?it/s]"
         | 
| 360 | 
            +
                  ]
         | 
| 361 | 
            +
                 },
         | 
| 362 | 
            +
                 "metadata": {},
         | 
| 363 | 
            +
                 "output_type": "display_data"
         | 
| 364 | 
            +
                },
         | 
| 365 | 
            +
                {
         | 
| 366 | 
            +
                 "name": "stdout",
         | 
| 367 | 
            +
                 "output_type": "stream",
         | 
| 368 | 
            +
                 "text": [
         | 
| 369 | 
            +
                  "Batch 1: Embeddings = 243068 documents = 243068\n"
         | 
| 370 | 
            +
                 ]
         | 
| 371 | 
            +
                },
         | 
| 372 | 
            +
                {
         | 
| 373 | 
            +
                 "data": {
         | 
| 374 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 375 | 
            +
                   "model_id": "0cf8121a116f49fba72095fee46ef49d",
         | 
| 376 | 
            +
                   "version_major": 2,
         | 
| 377 | 
            +
                   "version_minor": 0
         | 
| 378 | 
            +
                  },
         | 
| 379 | 
            +
                  "text/plain": [
         | 
| 380 | 
            +
                   "  0%|          | 0/104065 [00:00<?, ?it/s]"
         | 
| 381 | 
            +
                  ]
         | 
| 382 | 
            +
                 },
         | 
| 383 | 
            +
                 "metadata": {},
         | 
| 384 | 
            +
                 "output_type": "display_data"
         | 
| 385 | 
            +
                },
         | 
| 386 | 
            +
                {
         | 
| 387 | 
            +
                 "name": "stdout",
         | 
| 388 | 
            +
                 "output_type": "stream",
         | 
| 389 | 
            +
                 "text": [
         | 
| 390 | 
            +
                  "Batch 2: Embeddings = 104065 documents = 104065\n"
         | 
| 391 | 
            +
                 ]
         | 
| 392 | 
            +
                },
         | 
| 393 | 
            +
                {
         | 
| 394 | 
            +
                 "data": {
         | 
| 395 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 396 | 
            +
                   "model_id": "8f94983077854b5f9ab512f7d429eb55",
         | 
| 397 | 
            +
                   "version_major": 2,
         | 
| 398 | 
            +
                   "version_minor": 0
         | 
| 399 | 
            +
                  },
         | 
| 400 | 
            +
                  "text/plain": [
         | 
| 401 | 
            +
                   "  0%|          | 0/123154 [00:00<?, ?it/s]"
         | 
| 402 | 
            +
                  ]
         | 
| 403 | 
            +
                 },
         | 
| 404 | 
            +
                 "metadata": {},
         | 
| 405 | 
            +
                 "output_type": "display_data"
         | 
| 406 | 
            +
                },
         | 
| 407 | 
            +
                {
         | 
| 408 | 
            +
                 "name": "stdout",
         | 
| 409 | 
            +
                 "output_type": "stream",
         | 
| 410 | 
            +
                 "text": [
         | 
| 411 | 
            +
                  "Batch 3: Embeddings = 123154 documents = 123154\n"
         | 
| 412 | 
            +
                 ]
         | 
| 413 | 
            +
                },
         | 
| 414 | 
            +
                {
         | 
| 415 | 
            +
                 "data": {
         | 
| 416 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 417 | 
            +
                   "model_id": "3d2932212e6b4323a377ff23758e7af7",
         | 
| 418 | 
            +
                   "version_major": 2,
         | 
| 419 | 
            +
                   "version_minor": 0
         | 
| 420 | 
            +
                  },
         | 
| 421 | 
            +
                  "text/plain": [
         | 
| 422 | 
            +
                   "  0%|          | 0/135965 [00:00<?, ?it/s]"
         | 
| 423 | 
            +
                  ]
         | 
| 424 | 
            +
                 },
         | 
| 425 | 
            +
                 "metadata": {},
         | 
| 426 | 
            +
                 "output_type": "display_data"
         | 
| 427 | 
            +
                },
         | 
| 428 | 
            +
                {
         | 
| 429 | 
            +
                 "name": "stdout",
         | 
| 430 | 
            +
                 "output_type": "stream",
         | 
| 431 | 
            +
                 "text": [
         | 
| 432 | 
            +
                  "Batch 4: Embeddings = 135965 documents = 135965\n"
         | 
| 433 | 
            +
                 ]
         | 
| 434 | 
            +
                },
         | 
| 435 | 
            +
                {
         | 
| 436 | 
            +
                 "data": {
         | 
| 437 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 438 | 
            +
                   "model_id": "3de41d88c8bb439591925de045d8afe8",
         | 
| 439 | 
            +
                   "version_major": 2,
         | 
| 440 | 
            +
                   "version_minor": 0
         | 
| 441 | 
            +
                  },
         | 
| 442 | 
            +
                  "text/plain": [
         | 
| 443 | 
            +
                   "  0%|          | 0/99138 [00:00<?, ?it/s]"
         | 
| 444 | 
            +
                  ]
         | 
| 445 | 
            +
                 },
         | 
| 446 | 
            +
                 "metadata": {},
         | 
| 447 | 
            +
                 "output_type": "display_data"
         | 
| 448 | 
            +
                },
         | 
| 449 | 
            +
                {
         | 
| 450 | 
            +
                 "name": "stdout",
         | 
| 451 | 
            +
                 "output_type": "stream",
         | 
| 452 | 
            +
                 "text": [
         | 
| 453 | 
            +
                  "Batch 5: Embeddings = 99138 documents = 99138\n"
         | 
| 454 | 
            +
                 ]
         | 
| 455 | 
            +
                },
         | 
| 456 | 
            +
                {
         | 
| 457 | 
            +
                 "data": {
         | 
| 458 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 459 | 
            +
                   "model_id": "604a4f3b1baf429687ac00aa63778cdf",
         | 
| 460 | 
            +
                   "version_major": 2,
         | 
| 461 | 
            +
                   "version_minor": 0
         | 
| 462 | 
            +
                  },
         | 
| 463 | 
            +
                  "text/plain": [
         | 
| 464 | 
            +
                   "  0%|          | 0/83678 [00:00<?, ?it/s]"
         | 
| 465 | 
            +
                  ]
         | 
| 466 | 
            +
                 },
         | 
| 467 | 
            +
                 "metadata": {},
         | 
| 468 | 
            +
                 "output_type": "display_data"
         | 
| 469 | 
            +
                },
         | 
| 470 | 
            +
                {
         | 
| 471 | 
            +
                 "name": "stdout",
         | 
| 472 | 
            +
                 "output_type": "stream",
         | 
| 473 | 
            +
                 "text": [
         | 
| 474 | 
            +
                  "Batch 6: Embeddings = 83678 documents = 83678\n"
         | 
| 475 | 
            +
                 ]
         | 
| 476 | 
            +
                },
         | 
| 477 | 
            +
                {
         | 
| 478 | 
            +
                 "data": {
         | 
| 479 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 480 | 
            +
                   "model_id": "ecc69a2b763c4296b3a1fa35b15477aa",
         | 
| 481 | 
            +
                   "version_major": 2,
         | 
| 482 | 
            +
                   "version_minor": 0
         | 
| 483 | 
            +
                  },
         | 
| 484 | 
            +
                  "text/plain": [
         | 
| 485 | 
            +
                   "  0%|          | 0/30573 [00:00<?, ?it/s]"
         | 
| 486 | 
            +
                  ]
         | 
| 487 | 
            +
                 },
         | 
| 488 | 
            +
                 "metadata": {},
         | 
| 489 | 
            +
                 "output_type": "display_data"
         | 
| 490 | 
            +
                },
         | 
| 491 | 
            +
                {
         | 
| 492 | 
            +
                 "name": "stdout",
         | 
| 493 | 
            +
                 "output_type": "stream",
         | 
| 494 | 
            +
                 "text": [
         | 
| 495 | 
            +
                  "Batch 7: Embeddings = 30573 documents = 30573\n"
         | 
| 496 | 
            +
                 ]
         | 
| 497 | 
            +
                },
         | 
| 498 | 
            +
                {
         | 
| 499 | 
            +
                 "data": {
         | 
| 500 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 501 | 
            +
                   "model_id": "bbdc03d2ca5a4099b412c1767b3d394c",
         | 
| 502 | 
            +
                   "version_major": 2,
         | 
| 503 | 
            +
                   "version_minor": 0
         | 
| 504 | 
            +
                  },
         | 
| 505 | 
            +
                  "text/plain": [
         | 
| 506 | 
            +
                   "  0%|          | 0/78957 [00:00<?, ?it/s]"
         | 
| 507 | 
            +
                  ]
         | 
| 508 | 
            +
                 },
         | 
| 509 | 
            +
                 "metadata": {},
         | 
| 510 | 
            +
                 "output_type": "display_data"
         | 
| 511 | 
            +
                },
         | 
| 512 | 
            +
                {
         | 
| 513 | 
            +
                 "name": "stdout",
         | 
| 514 | 
            +
                 "output_type": "stream",
         | 
| 515 | 
            +
                 "text": [
         | 
| 516 | 
            +
                  "Batch 8: Embeddings = 78957 documents = 78957\n"
         | 
| 517 | 
            +
                 ]
         | 
| 518 | 
            +
                },
         | 
| 519 | 
            +
                {
         | 
| 520 | 
            +
                 "data": {
         | 
| 521 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 522 | 
            +
                   "model_id": "d4c64dfc612c4b7986de5385f5d88ba7",
         | 
| 523 | 
            +
                   "version_major": 2,
         | 
| 524 | 
            +
                   "version_minor": 0
         | 
| 525 | 
            +
                  },
         | 
| 526 | 
            +
                  "text/plain": [
         | 
| 527 | 
            +
                   "  0%|          | 0/86327 [00:00<?, ?it/s]"
         | 
| 528 | 
            +
                  ]
         | 
| 529 | 
            +
                 },
         | 
| 530 | 
            +
                 "metadata": {},
         | 
| 531 | 
            +
                 "output_type": "display_data"
         | 
| 532 | 
            +
                },
         | 
| 533 | 
            +
                {
         | 
| 534 | 
            +
                 "name": "stdout",
         | 
| 535 | 
            +
                 "output_type": "stream",
         | 
| 536 | 
            +
                 "text": [
         | 
| 537 | 
            +
                  "Batch 9: Embeddings = 86327 documents = 86327\n"
         | 
| 538 | 
            +
                 ]
         | 
| 539 | 
            +
                },
         | 
| 540 | 
            +
                {
         | 
| 541 | 
            +
                 "data": {
         | 
| 542 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 543 | 
            +
                   "model_id": "d05e2884021143e0baf595a86725466a",
         | 
| 544 | 
            +
                   "version_major": 2,
         | 
| 545 | 
            +
                   "version_minor": 0
         | 
| 546 | 
            +
                  },
         | 
| 547 | 
            +
                  "text/plain": [
         | 
| 548 | 
            +
                   "  0%|          | 0/83111 [00:00<?, ?it/s]"
         | 
| 549 | 
            +
                  ]
         | 
| 550 | 
            +
                 },
         | 
| 551 | 
            +
                 "metadata": {},
         | 
| 552 | 
            +
                 "output_type": "display_data"
         | 
| 553 | 
            +
                },
         | 
| 554 | 
            +
                {
         | 
| 555 | 
            +
                 "name": "stdout",
         | 
| 556 | 
            +
                 "output_type": "stream",
         | 
| 557 | 
            +
                 "text": [
         | 
| 558 | 
            +
                  "Batch 10: Embeddings = 83111 documents = 83111\n"
         | 
| 559 | 
            +
                 ]
         | 
| 560 | 
            +
                },
         | 
| 561 | 
            +
                {
         | 
| 562 | 
            +
                 "data": {
         | 
| 563 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 564 | 
            +
                   "model_id": "47f3537175d740aba9e2dc7de4c89fec",
         | 
| 565 | 
            +
                   "version_major": 2,
         | 
| 566 | 
            +
                   "version_minor": 0
         | 
| 567 | 
            +
                  },
         | 
| 568 | 
            +
                  "text/plain": [
         | 
| 569 | 
            +
                   "  0%|          | 0/92664 [00:00<?, ?it/s]"
         | 
| 570 | 
            +
                  ]
         | 
| 571 | 
            +
                 },
         | 
| 572 | 
            +
                 "metadata": {},
         | 
| 573 | 
            +
                 "output_type": "display_data"
         | 
| 574 | 
            +
                },
         | 
| 575 | 
            +
                {
         | 
| 576 | 
            +
                 "name": "stdout",
         | 
| 577 | 
            +
                 "output_type": "stream",
         | 
| 578 | 
            +
                 "text": [
         | 
| 579 | 
            +
                  "Batch 11: Embeddings = 92664 documents = 92664\n"
         | 
| 580 | 
            +
                 ]
         | 
| 581 | 
            +
                },
         | 
| 582 | 
            +
                {
         | 
| 583 | 
            +
                 "data": {
         | 
| 584 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 585 | 
            +
                   "model_id": "02b89207ee8c407db4ad8045b3634243",
         | 
| 586 | 
            +
                   "version_major": 2,
         | 
| 587 | 
            +
                   "version_minor": 0
         | 
| 588 | 
            +
                  },
         | 
| 589 | 
            +
                  "text/plain": [
         | 
| 590 | 
            +
                   "  0%|          | 0/66404 [00:00<?, ?it/s]"
         | 
| 591 | 
            +
                  ]
         | 
| 592 | 
            +
                 },
         | 
| 593 | 
            +
                 "metadata": {},
         | 
| 594 | 
            +
                 "output_type": "display_data"
         | 
| 595 | 
            +
                },
         | 
| 596 | 
            +
                {
         | 
| 597 | 
            +
                 "name": "stdout",
         | 
| 598 | 
            +
                 "output_type": "stream",
         | 
| 599 | 
            +
                 "text": [
         | 
| 600 | 
            +
                  "Batch 12: Embeddings = 66404 documents = 66404\n"
         | 
| 601 | 
            +
                 ]
         | 
| 602 | 
            +
                },
         | 
| 603 | 
            +
                {
         | 
| 604 | 
            +
                 "data": {
         | 
| 605 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 606 | 
            +
                   "model_id": "e1a96dfd66644007a39a5fef38e008ab",
         | 
| 607 | 
            +
                   "version_major": 2,
         | 
| 608 | 
            +
                   "version_minor": 0
         | 
| 609 | 
            +
                  },
         | 
| 610 | 
            +
                  "text/plain": [
         | 
| 611 | 
            +
                   "  0%|          | 0/62844 [00:00<?, ?it/s]"
         | 
| 612 | 
            +
                  ]
         | 
| 613 | 
            +
                 },
         | 
| 614 | 
            +
                 "metadata": {},
         | 
| 615 | 
            +
                 "output_type": "display_data"
         | 
| 616 | 
            +
                },
         | 
| 617 | 
            +
                {
         | 
| 618 | 
            +
                 "name": "stdout",
         | 
| 619 | 
            +
                 "output_type": "stream",
         | 
| 620 | 
            +
                 "text": [
         | 
| 621 | 
            +
                  "Batch 13: Embeddings = 62844 documents = 62844\n"
         | 
| 622 | 
            +
                 ]
         | 
| 623 | 
            +
                },
         | 
| 624 | 
            +
                {
         | 
| 625 | 
            +
                 "data": {
         | 
| 626 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 627 | 
            +
                   "model_id": "3bef95b8dff044fa922e52e1e88b9813",
         | 
| 628 | 
            +
                   "version_major": 2,
         | 
| 629 | 
            +
                   "version_minor": 0
         | 
| 630 | 
            +
                  },
         | 
| 631 | 
            +
                  "text/plain": [
         | 
| 632 | 
            +
                   "  0%|          | 0/59349 [00:00<?, ?it/s]"
         | 
| 633 | 
            +
                  ]
         | 
| 634 | 
            +
                 },
         | 
| 635 | 
            +
                 "metadata": {},
         | 
| 636 | 
            +
                 "output_type": "display_data"
         | 
| 637 | 
            +
                },
         | 
| 638 | 
            +
                {
         | 
| 639 | 
            +
                 "name": "stdout",
         | 
| 640 | 
            +
                 "output_type": "stream",
         | 
| 641 | 
            +
                 "text": [
         | 
| 642 | 
            +
                  "Batch 14: Embeddings = 59349 documents = 59349\n"
         | 
| 643 | 
            +
                 ]
         | 
| 644 | 
            +
                },
         | 
| 645 | 
            +
                {
         | 
| 646 | 
            +
                 "data": {
         | 
| 647 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 648 | 
            +
                   "model_id": "eb74103e549c4b0386d19f5d475af812",
         | 
| 649 | 
            +
                   "version_major": 2,
         | 
| 650 | 
            +
                   "version_minor": 0
         | 
| 651 | 
            +
                  },
         | 
| 652 | 
            +
                  "text/plain": [
         | 
| 653 | 
            +
                   "  0%|          | 0/52554 [00:00<?, ?it/s]"
         | 
| 654 | 
            +
                  ]
         | 
| 655 | 
            +
                 },
         | 
| 656 | 
            +
                 "metadata": {},
         | 
| 657 | 
            +
                 "output_type": "display_data"
         | 
| 658 | 
            +
                },
         | 
| 659 | 
            +
                {
         | 
| 660 | 
            +
                 "name": "stdout",
         | 
| 661 | 
            +
                 "output_type": "stream",
         | 
| 662 | 
            +
                 "text": [
         | 
| 663 | 
            +
                  "Batch 15: Embeddings = 52554 documents = 52554\n"
         | 
| 664 | 
            +
                 ]
         | 
| 665 | 
            +
                },
         | 
| 666 | 
            +
                {
         | 
| 667 | 
            +
                 "data": {
         | 
| 668 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 669 | 
            +
                   "model_id": "41228a5bf8294c1e95f34b9376714543",
         | 
| 670 | 
            +
                   "version_major": 2,
         | 
| 671 | 
            +
                   "version_minor": 0
         | 
| 672 | 
            +
                  },
         | 
| 673 | 
            +
                  "text/plain": [
         | 
| 674 | 
            +
                   "  0%|          | 0/34240 [00:00<?, ?it/s]"
         | 
| 675 | 
            +
                  ]
         | 
| 676 | 
            +
                 },
         | 
| 677 | 
            +
                 "metadata": {},
         | 
| 678 | 
            +
                 "output_type": "display_data"
         | 
| 679 | 
            +
                },
         | 
| 680 | 
            +
                {
         | 
| 681 | 
            +
                 "name": "stdout",
         | 
| 682 | 
            +
                 "output_type": "stream",
         | 
| 683 | 
            +
                 "text": [
         | 
| 684 | 
            +
                  "Batch 16: Embeddings = 34240 documents = 34240\n"
         | 
| 685 | 
            +
                 ]
         | 
| 686 | 
            +
                },
         | 
| 687 | 
            +
                {
         | 
| 688 | 
            +
                 "data": {
         | 
| 689 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 690 | 
            +
                   "model_id": "ba6eb3a975514d33ae3acac8859278d1",
         | 
| 691 | 
            +
                   "version_major": 2,
         | 
| 692 | 
            +
                   "version_minor": 0
         | 
| 693 | 
            +
                  },
         | 
| 694 | 
            +
                  "text/plain": [
         | 
| 695 | 
            +
                   "  0%|          | 0/35933 [00:00<?, ?it/s]"
         | 
| 696 | 
            +
                  ]
         | 
| 697 | 
            +
                 },
         | 
| 698 | 
            +
                 "metadata": {},
         | 
| 699 | 
            +
                 "output_type": "display_data"
         | 
| 700 | 
            +
                },
         | 
| 701 | 
            +
                {
         | 
| 702 | 
            +
                 "name": "stdout",
         | 
| 703 | 
            +
                 "output_type": "stream",
         | 
| 704 | 
            +
                 "text": [
         | 
| 705 | 
            +
                  "Batch 17: Embeddings = 35933 documents = 35933\n"
         | 
| 706 | 
            +
                 ]
         | 
| 707 | 
            +
                },
         | 
| 708 | 
            +
                {
         | 
| 709 | 
            +
                 "data": {
         | 
| 710 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 711 | 
            +
                   "model_id": "67ecca34d2a1414c9e9817d835fe2083",
         | 
| 712 | 
            +
                   "version_major": 2,
         | 
| 713 | 
            +
                   "version_minor": 0
         | 
| 714 | 
            +
                  },
         | 
| 715 | 
            +
                  "text/plain": [
         | 
| 716 | 
            +
                   "  0%|          | 0/64575 [00:00<?, ?it/s]"
         | 
| 717 | 
            +
                  ]
         | 
| 718 | 
            +
                 },
         | 
| 719 | 
            +
                 "metadata": {},
         | 
| 720 | 
            +
                 "output_type": "display_data"
         | 
| 721 | 
            +
                },
         | 
| 722 | 
            +
                {
         | 
| 723 | 
            +
                 "name": "stdout",
         | 
| 724 | 
            +
                 "output_type": "stream",
         | 
| 725 | 
            +
                 "text": [
         | 
| 726 | 
            +
                  "Batch 18: Embeddings = 64575 documents = 64575\n"
         | 
| 727 | 
            +
                 ]
         | 
| 728 | 
            +
                },
         | 
| 729 | 
            +
                {
         | 
| 730 | 
            +
                 "data": {
         | 
| 731 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 732 | 
            +
                   "model_id": "7fb632776adb4933b92c48f852b0ae6b",
         | 
| 733 | 
            +
                   "version_major": 2,
         | 
| 734 | 
            +
                   "version_minor": 0
         | 
| 735 | 
            +
                  },
         | 
| 736 | 
            +
                  "text/plain": [
         | 
| 737 | 
            +
                   "  0%|          | 0/94244 [00:00<?, ?it/s]"
         | 
| 738 | 
            +
                  ]
         | 
| 739 | 
            +
                 },
         | 
| 740 | 
            +
                 "metadata": {},
         | 
| 741 | 
            +
                 "output_type": "display_data"
         | 
| 742 | 
            +
                },
         | 
| 743 | 
            +
                {
         | 
| 744 | 
            +
                 "name": "stdout",
         | 
| 745 | 
            +
                 "output_type": "stream",
         | 
| 746 | 
            +
                 "text": [
         | 
| 747 | 
            +
                  "Batch 19: Embeddings = 94244 documents = 94244\n"
         | 
| 748 | 
            +
                 ]
         | 
| 749 | 
            +
                },
         | 
| 750 | 
            +
                {
         | 
| 751 | 
            +
                 "data": {
         | 
| 752 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 753 | 
            +
                   "model_id": "17d73c88d4334357854f852c9783bfdb",
         | 
| 754 | 
            +
                   "version_major": 2,
         | 
| 755 | 
            +
                   "version_minor": 0
         | 
| 756 | 
            +
                  },
         | 
| 757 | 
            +
                  "text/plain": [
         | 
| 758 | 
            +
                   "  0%|          | 0/124472 [00:00<?, ?it/s]"
         | 
| 759 | 
            +
                  ]
         | 
| 760 | 
            +
                 },
         | 
| 761 | 
            +
                 "metadata": {},
         | 
| 762 | 
            +
                 "output_type": "display_data"
         | 
| 763 | 
            +
                },
         | 
| 764 | 
            +
                {
         | 
| 765 | 
            +
                 "name": "stdout",
         | 
| 766 | 
            +
                 "output_type": "stream",
         | 
| 767 | 
            +
                 "text": [
         | 
| 768 | 
            +
                  "Batch 20: Embeddings = 124472 documents = 124472\n"
         | 
| 769 | 
            +
                 ]
         | 
| 770 | 
            +
                },
         | 
| 771 | 
            +
                {
         | 
| 772 | 
            +
                 "data": {
         | 
| 773 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 774 | 
            +
                   "model_id": "4dd7c3477a244d43b1d85417d4549eaa",
         | 
| 775 | 
            +
                   "version_major": 2,
         | 
| 776 | 
            +
                   "version_minor": 0
         | 
| 777 | 
            +
                  },
         | 
| 778 | 
            +
                  "text/plain": [
         | 
| 779 | 
            +
                   "  0%|          | 0/121849 [00:00<?, ?it/s]"
         | 
| 780 | 
            +
                  ]
         | 
| 781 | 
            +
                 },
         | 
| 782 | 
            +
                 "metadata": {},
         | 
| 783 | 
            +
                 "output_type": "display_data"
         | 
| 784 | 
            +
                },
         | 
| 785 | 
            +
                {
         | 
| 786 | 
            +
                 "name": "stdout",
         | 
| 787 | 
            +
                 "output_type": "stream",
         | 
| 788 | 
            +
                 "text": [
         | 
| 789 | 
            +
                  "Batch 21: Embeddings = 121849 documents = 121849\n"
         | 
| 790 | 
            +
                 ]
         | 
| 791 | 
            +
                },
         | 
| 792 | 
            +
                {
         | 
| 793 | 
            +
                 "data": {
         | 
| 794 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 795 | 
            +
                   "model_id": "e8b657d57f584128ae5a7ee2ecf23c7f",
         | 
| 796 | 
            +
                   "version_major": 2,
         | 
| 797 | 
            +
                   "version_minor": 0
         | 
| 798 | 
            +
                  },
         | 
| 799 | 
            +
                  "text/plain": [
         | 
| 800 | 
            +
                   "  0%|          | 0/147110 [00:00<?, ?it/s]"
         | 
| 801 | 
            +
                  ]
         | 
| 802 | 
            +
                 },
         | 
| 803 | 
            +
                 "metadata": {},
         | 
| 804 | 
            +
                 "output_type": "display_data"
         | 
| 805 | 
            +
                },
         | 
| 806 | 
            +
                {
         | 
| 807 | 
            +
                 "name": "stdout",
         | 
| 808 | 
            +
                 "output_type": "stream",
         | 
| 809 | 
            +
                 "text": [
         | 
| 810 | 
            +
                  "Batch 22: Embeddings = 147110 documents = 147110\n"
         | 
| 811 | 
            +
                 ]
         | 
| 812 | 
            +
                },
         | 
| 813 | 
            +
                {
         | 
| 814 | 
            +
                 "data": {
         | 
| 815 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 816 | 
            +
                   "model_id": "f3465378528a425e8dc9d040a003588a",
         | 
| 817 | 
            +
                   "version_major": 2,
         | 
| 818 | 
            +
                   "version_minor": 0
         | 
| 819 | 
            +
                  },
         | 
| 820 | 
            +
                  "text/plain": [
         | 
| 821 | 
            +
                   "  0%|          | 0/70322 [00:00<?, ?it/s]"
         | 
| 822 | 
            +
                  ]
         | 
| 823 | 
            +
                 },
         | 
| 824 | 
            +
                 "metadata": {},
         | 
| 825 | 
            +
                 "output_type": "display_data"
         | 
| 826 | 
            +
                },
         | 
| 827 | 
            +
                {
         | 
| 828 | 
            +
                 "name": "stdout",
         | 
| 829 | 
            +
                 "output_type": "stream",
         | 
| 830 | 
            +
                 "text": [
         | 
| 831 | 
            +
                  "Batch 23: Embeddings = 70322 documents = 70322\n",
         | 
| 832 | 
            +
                  "6250.827601939993\n"
         | 
| 833 | 
            +
                 ]
         | 
| 834 | 
            +
                }
         | 
| 835 | 
            +
               ],
         | 
| 836 | 
            +
               "source": [
         | 
| 837 | 
            +
                "start = time.perf_counter()\n",
         | 
| 838 | 
            +
                "for i, file_in in tqdm(enumerate(files_in)):\n",
         | 
| 839 | 
            +
                "\n",
         | 
| 840 | 
            +
                "    with open(file_in, 'r') as f:\n",
         | 
| 841 | 
            +
                "        documents = [json.loads(line) for line in f]\n",
         | 
| 842 | 
            +
                "        \n",
         | 
| 843 | 
            +
                "    # Get embeddings\n",
         | 
| 844 | 
            +
                "    await main(documents)\n",
         | 
| 845 | 
            +
                "        \n",
         | 
| 846 | 
            +
                "    # Make sure we got it all\n",
         | 
| 847 | 
            +
                "    count = 0\n",
         | 
| 848 | 
            +
                "    for document in documents:\n",
         | 
| 849 | 
            +
                "        if document['embedding'] and len(document['embedding']) == 384:\n",
         | 
| 850 | 
            +
                "            count += 1\n",
         | 
| 851 | 
            +
                "    print(f'Batch {i+1}: Embeddings = {count} documents = {len(documents)}')\n",
         | 
| 852 | 
            +
                "\n",
         | 
| 853 | 
            +
                "    # Write to file\n",
         | 
| 854 | 
            +
                "    with open(folder_out/file_in.name, 'w', encoding='utf-8') as f:\n",
         | 
| 855 | 
            +
                "        for document in documents:\n",
         | 
| 856 | 
            +
                "            json_str = json.dumps(document, ensure_ascii=False)\n",
         | 
| 857 | 
            +
                "            f.write(json_str + '\\n')\n",
         | 
| 858 | 
            +
                "print(time.perf_counter() - start)"
         | 
| 859 | 
            +
               ]
         | 
| 860 | 
            +
              },
         | 
| 861 | 
            +
              {
         | 
| 862 | 
            +
               "cell_type": "code",
         | 
| 863 | 
            +
               "execution_count": null,
         | 
| 864 | 
            +
               "id": "cdee2b1c-0493-4b3e-8ecb-9d79109c756e",
         | 
| 865 | 
            +
               "metadata": {
         | 
| 866 | 
            +
                "tags": []
         | 
| 867 | 
            +
               },
         | 
| 868 | 
            +
               "outputs": [],
         | 
| 869 | 
            +
               "source": [
         | 
| 870 | 
            +
                "documents[0]"
         | 
| 871 | 
            +
               ]
         | 
| 872 | 
            +
              },
         | 
| 873 | 
            +
              {
         | 
| 874 | 
            +
               "cell_type": "markdown",
         | 
| 875 | 
            +
               "id": "f90a0ed7-b5e9-4ae4-9e87-4c04875ebcc9",
         | 
| 876 | 
            +
               "metadata": {},
         | 
| 877 | 
            +
               "source": [
         | 
| 878 | 
            +
                "Lets double check that we got all the embeddings we expected!"
         | 
| 879 | 
            +
               ]
         | 
| 880 | 
            +
              },
         | 
| 881 | 
            +
              {
         | 
| 882 | 
            +
               "cell_type": "markdown",
         | 
| 883 | 
            +
               "id": "5b78bfa4-d365-4906-a71c-f444eabf6bf8",
         | 
| 884 | 
            +
               "metadata": {
         | 
| 885 | 
            +
                "tags": []
         | 
| 886 | 
            +
               },
         | 
| 887 | 
            +
               "source": [
         | 
| 888 | 
            +
                "Great, we can see that they match.\n",
         | 
| 889 | 
            +
                "\n",
         | 
| 890 | 
            +
                "Let's write our embeddings to file"
         | 
| 891 | 
            +
               ]
         | 
| 892 | 
            +
              },
         | 
| 893 | 
            +
              {
         | 
| 894 | 
            +
               "cell_type": "markdown",
         | 
| 895 | 
            +
               "id": "fc1e7cc5-b878-42bb-9fb4-e810f3f5006a",
         | 
| 896 | 
            +
               "metadata": {
         | 
| 897 | 
            +
                "tags": []
         | 
| 898 | 
            +
               },
         | 
| 899 | 
            +
               "source": [
         | 
| 900 | 
            +
                "# Next Steps\n",
         | 
| 901 | 
            +
                "We need to import this into a vector db. "
         | 
| 902 | 
            +
               ]
         | 
| 903 | 
            +
              }
         | 
| 904 | 
            +
             ],
         | 
| 905 | 
            +
             "metadata": {
         | 
| 906 | 
            +
              "kernelspec": {
         | 
| 907 | 
            +
               "display_name": "Python 3 (ipykernel)",
         | 
| 908 | 
            +
               "language": "python",
         | 
| 909 | 
            +
               "name": "python3"
         | 
| 910 | 
            +
              },
         | 
| 911 | 
            +
              "language_info": {
         | 
| 912 | 
            +
               "codemirror_mode": {
         | 
| 913 | 
            +
                "name": "ipython",
         | 
| 914 | 
            +
                "version": 3
         | 
| 915 | 
            +
               },
         | 
| 916 | 
            +
               "file_extension": ".py",
         | 
| 917 | 
            +
               "mimetype": "text/x-python",
         | 
| 918 | 
            +
               "name": "python",
         | 
| 919 | 
            +
               "nbconvert_exporter": "python",
         | 
| 920 | 
            +
               "pygments_lexer": "ipython3",
         | 
| 921 | 
            +
               "version": "3.10.13"
         | 
| 922 | 
            +
              }
         | 
| 923 | 
            +
             },
         | 
| 924 | 
            +
             "nbformat": 4,
         | 
| 925 | 
            +
             "nbformat_minor": 5
         | 
| 926 | 
            +
            }
         | 
    	
        notebooks/05_vector_db.ipynb
    ADDED
    
    | @@ -0,0 +1,904 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
             "cells": [
         | 
| 3 | 
            +
              {
         | 
| 4 | 
            +
               "cell_type": "markdown",
         | 
| 5 | 
            +
               "id": "6a151ade-7d86-4a2e-bfe7-462089f4e04c",
         | 
| 6 | 
            +
               "metadata": {},
         | 
| 7 | 
            +
               "source": [
         | 
| 8 | 
            +
                "# Approach\n",
         | 
| 9 | 
            +
                "There are a number of aspects of choosing a vector db that might be unique to your situation. You should think through your HW, utilization, latency requirements, scale, etc before choosing. \n",
         | 
| 10 | 
            +
                "\n",
         | 
| 11 | 
            +
                "Im targeting a demo (low utilization, latency can be relaxed) that will live on a huggingface space. I have a small scale that could even fit in memory. I like [Qdrant](https://qdrant.tech) for this. "
         | 
| 12 | 
            +
               ]
         | 
| 13 | 
            +
              },
         | 
| 14 | 
            +
              {
         | 
| 15 | 
            +
               "cell_type": "markdown",
         | 
| 16 | 
            +
               "id": "b1b28232-b65d-41ce-88de-fd70b93a528d",
         | 
| 17 | 
            +
               "metadata": {},
         | 
| 18 | 
            +
               "source": [
         | 
| 19 | 
            +
                "# Imports"
         | 
| 20 | 
            +
               ]
         | 
| 21 | 
            +
              },
         | 
| 22 | 
            +
              {
         | 
| 23 | 
            +
               "cell_type": "code",
         | 
| 24 | 
            +
               "execution_count": 1,
         | 
| 25 | 
            +
               "id": "88408486-566a-4791-8ef2-5ee3e6941156",
         | 
| 26 | 
            +
               "metadata": {
         | 
| 27 | 
            +
                "tags": []
         | 
| 28 | 
            +
               },
         | 
| 29 | 
            +
               "outputs": [],
         | 
| 30 | 
            +
               "source": [
         | 
| 31 | 
            +
                "from IPython.core.interactiveshell import InteractiveShell\n",
         | 
| 32 | 
            +
                "InteractiveShell.ast_node_interactivity = 'all'"
         | 
| 33 | 
            +
               ]
         | 
| 34 | 
            +
              },
         | 
| 35 | 
            +
              {
         | 
| 36 | 
            +
               "cell_type": "code",
         | 
| 37 | 
            +
               "execution_count": 2,
         | 
| 38 | 
            +
               "id": "abb5186b-ee67-4e1e-882d-3d8d5b4575d4",
         | 
| 39 | 
            +
               "metadata": {
         | 
| 40 | 
            +
                "tags": []
         | 
| 41 | 
            +
               },
         | 
| 42 | 
            +
               "outputs": [],
         | 
| 43 | 
            +
               "source": [
         | 
| 44 | 
            +
                "from pathlib import Path\n",
         | 
| 45 | 
            +
                "import json\n",
         | 
| 46 | 
            +
                "\n",
         | 
| 47 | 
            +
                "from tqdm.notebook import tqdm\n",
         | 
| 48 | 
            +
                "import lancedb"
         | 
| 49 | 
            +
               ]
         | 
| 50 | 
            +
              },
         | 
| 51 | 
            +
              {
         | 
| 52 | 
            +
               "cell_type": "code",
         | 
| 53 | 
            +
               "execution_count": 3,
         | 
| 54 | 
            +
               "id": "c4b82ea2-8b30-4c2e-99f0-9a30f2f1bfb7",
         | 
| 55 | 
            +
               "metadata": {
         | 
| 56 | 
            +
                "tags": []
         | 
| 57 | 
            +
               },
         | 
| 58 | 
            +
               "outputs": [
         | 
| 59 | 
            +
                {
         | 
| 60 | 
            +
                 "name": "stdout",
         | 
| 61 | 
            +
                 "output_type": "stream",
         | 
| 62 | 
            +
                 "text": [
         | 
| 63 | 
            +
                  "/home/ec2-user/arabic-wiki\n"
         | 
| 64 | 
            +
                 ]
         | 
| 65 | 
            +
                }
         | 
| 66 | 
            +
               ],
         | 
| 67 | 
            +
               "source": [
         | 
| 68 | 
            +
                "proj_dir = Path.cwd().parent\n",
         | 
| 69 | 
            +
                "print(proj_dir)"
         | 
| 70 | 
            +
               ]
         | 
| 71 | 
            +
              },
         | 
| 72 | 
            +
              {
         | 
| 73 | 
            +
               "cell_type": "markdown",
         | 
| 74 | 
            +
               "id": "76119e74-f601-436d-a253-63c5a19d1c83",
         | 
| 75 | 
            +
               "metadata": {},
         | 
| 76 | 
            +
               "source": [
         | 
| 77 | 
            +
                "# Config"
         | 
| 78 | 
            +
               ]
         | 
| 79 | 
            +
              },
         | 
| 80 | 
            +
              {
         | 
| 81 | 
            +
               "cell_type": "code",
         | 
| 82 | 
            +
               "execution_count": 4,
         | 
| 83 | 
            +
               "id": "f6f74545-54a7-4f41-9f02-96964e1417f0",
         | 
| 84 | 
            +
               "metadata": {
         | 
| 85 | 
            +
                "tags": []
         | 
| 86 | 
            +
               },
         | 
| 87 | 
            +
               "outputs": [],
         | 
| 88 | 
            +
               "source": [
         | 
| 89 | 
            +
                "files_in = list((proj_dir / 'data/embedded/').glob('*.ndjson'))"
         | 
| 90 | 
            +
               ]
         | 
| 91 | 
            +
              },
         | 
| 92 | 
            +
              {
         | 
| 93 | 
            +
               "cell_type": "markdown",
         | 
| 94 | 
            +
               "id": "d2dd0df0-4274-45b3-9ee5-0205494e4d75",
         | 
| 95 | 
            +
               "metadata": {
         | 
| 96 | 
            +
                "tags": []
         | 
| 97 | 
            +
               },
         | 
| 98 | 
            +
               "source": [
         | 
| 99 | 
            +
                "# Setup\n",
         | 
| 100 | 
            +
                "Read in our list of dictionaries. This is the upper end for the machine Im using. This takes ~10GB of RAM. We could easily do this in batches of ~100k and be fine in most machines. "
         | 
| 101 | 
            +
               ]
         | 
| 102 | 
            +
              },
         | 
| 103 | 
            +
              {
         | 
| 104 | 
            +
               "cell_type": "code",
         | 
| 105 | 
            +
               "execution_count": 5,
         | 
| 106 | 
            +
               "id": "3c08e039-3686-4eca-9f87-7c469e3f19bc",
         | 
| 107 | 
            +
               "metadata": {
         | 
| 108 | 
            +
                "tags": []
         | 
| 109 | 
            +
               },
         | 
| 110 | 
            +
               "outputs": [],
         | 
| 111 | 
            +
               "source": [
         | 
| 112 | 
            +
                "with open(files_in[0], 'r') as f:\n",
         | 
| 113 | 
            +
                "    first_line = f.readline().strip()  # read only the first line\n",
         | 
| 114 | 
            +
                "    document = json.loads(first_line)\n",
         | 
| 115 | 
            +
                "    document['vector'] = document.pop('embedding')"
         | 
| 116 | 
            +
               ]
         | 
| 117 | 
            +
              },
         | 
| 118 | 
            +
              {
         | 
| 119 | 
            +
               "cell_type": "markdown",
         | 
| 120 | 
            +
               "id": "98aec715-8d97-439e-99c0-0eff63df386b",
         | 
| 121 | 
            +
               "metadata": {},
         | 
| 122 | 
            +
               "source": [
         | 
| 123 | 
            +
                "Convert the dictionaries to `Documents`"
         | 
| 124 | 
            +
               ]
         | 
| 125 | 
            +
              },
         | 
| 126 | 
            +
              {
         | 
| 127 | 
            +
               "cell_type": "code",
         | 
| 128 | 
            +
               "execution_count": 6,
         | 
| 129 | 
            +
               "id": "4821e3c1-697d-4b69-bae3-300168755df9",
         | 
| 130 | 
            +
               "metadata": {
         | 
| 131 | 
            +
                "tags": []
         | 
| 132 | 
            +
               },
         | 
| 133 | 
            +
               "outputs": [
         | 
| 134 | 
            +
                {
         | 
| 135 | 
            +
                 "data": {
         | 
| 136 | 
            +
                  "text/plain": [
         | 
| 137 | 
            +
                   "{'content': 'ุงูู
ุงุก ู
ุงุฏุฉู ุดูุงูุฉู ุนุฏูู
ุฉ ุงูููู ูุงูุฑุงุฆุญุฉุ ููู ุงูู
ูููู ุงูุฃุณุงุณู ููุฌุฏุงูู ูุงูุจุญูุฑุงุช ูุงูุจุญุงุฑ ูุงูู
ุญูุทุงุช ููุฐูู ููุณูุงุฆู ูู ุฌู
ูุน ุงููุงุฆูุงุช ุงูุญููุฉุ ููู ุฃูุซุฑ ุงูู
ุฑููุจุงุช ุงูููู
ูุงุฆููุฉ ุงูุชุดุงุฑุงู ุนูู ุณุทุญ ุงูุฃุฑุถ. ูุชุฃููู ุฌุฒูุก ุงูู
ุงุก ู
ู ุฐุฑูุฉ ุฃูุณุฌูู ู
ุฑูุฒูุฉ ุชุฑุชุจุท ุจูุง ุฐุฑูุชุง ููุฏุฑูุฌูู ุนูู ุทุฑูููุง ุจุฑุงุจุทุฉ ุชุณุงูู
ููุฉ ุจุญูุซ ุชููู ุตูุบุชู ุงูููู
ูุงุฆูุฉ H2O. ุนูุฏ ุงูุธุฑูู ุงูููุงุณูุฉ ู
ู ุงูุถุบุท ูุฏุฑุฌุฉ ุงูุญุฑุงุฑุฉ ูููู ุงูู
ุงุก ุณุงุฆูุงูุ ุฃู
ูุง ุงูุญุงูุฉ ุงูุตูุจุฉ ูุชุชุดููู ุนูุฏ ููุทุฉ ุงูุชุฌู
ูุฏุ ูุชุฏุนู ุจุงูุฌููุฏุ ุฃู
ูุง ุงูุญุงูุฉ ุงูุบุงุฒูุฉ ูุชุชุดููู ุนูุฏ ููุทุฉ ุงูุบููุงูุ ูุชุณู
ูู ุจุฎุงุฑ ุงูู
ุงุก.\\nุฅูู ุงูู
ุงุก ูู ุฃุณุงุณ ูุฌูุฏ ุงูุญูุงุฉ ุนูู ูููุจ ุงูุฃุฑุถุ ููู ูุบุทูู 71% ู
ู ุณุทุญูุงุ ูุชู
ุซูู ู
ูุงู ุงูุจุญุงุฑ ูุงูู
ุญูุทุงุช ุฃูุจุฑ ูุณุจุฉ ููู
ุงุก ุนูู ุงูุฃุฑุถุ ุญูุซ ุชุจูุบ ุญูุงูู 96.5%. ูุชุชูุฒูุน ุงููุณุจ ุงูุจุงููุฉ ุจูู ุงูู
ูุงู ุงูุฌููููุฉ ูุจูู ุฌููุฏ ุงูู
ูุงุทู ุงููุทุจููุฉ (1.7% ูููููู
ุง)ุ ู
ุน ูุฌูุฏ ูุณุจุฉ ุตุบูุฑุฉ ุนูู ุดูู ุจุฎุงุฑ ู
ุงุก ู
ุนููู ูู ุงูููุงุก ุนูู ููุฆุฉ ุณุญุงุจ (ุบููู
)ุ ูุฃุญูุงูุงู ุฃุฎุฑู ุนูู ููุฆุฉ ุถุจุงุจ ุฃู ูุฏูุ ุจุงูุฅุถุงูุฉ ุฅูู ุงูุฒุฎุงุช ุงูู
ุทุฑููุฉ ุฃู ุงูุซูุฌููุฉ. ุชุจูุบ ูุณุจุฉ ุงูู
ุงุก ุงูุนุฐุจ ุญูุงูู 2.5% ููุท ู
ู ุงูู
ุงุก ุงูู
ูุฌูุฏ ุนูู ุงูุฃุฑุถุ ๏ฟฝ๏ฟฝุฃุบูุจ ูุฐู ุงููู
ูููุฉ (ุญูุงูู 99%) ู
ูุฌูุฏุฉ ูู ุงููุชู ุงูุฌููุฏููุฉ ูู ุงูู
ูุงุทู ุงููุทุจููุฉุ ูู ุญูู ุชุชูุงุฌุฏ 0.3% ู
ู ุงูู
ุงุก ุงูุนุฐุจ ูู ุงูุฃููุงุฑ ูุงูุจุญูุฑุงุช ููู ุงูุบูุงู ุงูุฌููู.\\nุฃู
ุง ูู ุงูุทุจูุนุฉุ ูุชุชุบููุฑ ุญุงูุฉ ุงูู
ุงุก ุจูู ุงูุญุงูุงุช ุงูุซูุงุซุฉ ููู
ุงุฏุฉ ุนูู ุณุทุญ ุงูุฃุฑุถ ุจุงุณุชู
ุฑุงุฑ ู
ู ุฎูุงู ู
ุง ูุนุฑู ุจุงุณู
 ุงูุฏูุฑุฉ ุงูู
ุงุฆููุฉ (ุฃู ุฏูุฑุฉ ุงูู
ุงุก)ุ ูุงูุชู ุชุชุถู
ูู ุญุฏูุซ ุชุจุฎูุฑ ููุชุญ (ูุชุญ ุชุจุฎูุฑู) ุซู
 ุชูุซูู ููุทูู ุซู
 ุฌุฑูุงู ูุชุตู ุฅูู ุงูู
ุตุจู ูู ุงูู
ุณุทูุญุงุช ุงูู
ุงุฆููุฉ.\\n',\n",
         | 
| 138 | 
            +
                   " 'content_type': 'text',\n",
         | 
| 139 | 
            +
                   " 'score': None,\n",
         | 
| 140 | 
            +
                   " 'meta': {'id': '7',\n",
         | 
| 141 | 
            +
                   "  'revid': '2080427',\n",
         | 
| 142 | 
            +
                   "  'url': 'https://ar.wikipedia.org/wiki?curid=7',\n",
         | 
| 143 | 
            +
                   "  'title': 'ู
ุงุก',\n",
         | 
| 144 | 
            +
                   "  '_split_id': 0,\n",
         | 
| 145 | 
            +
                   "  '_split_overlap': [{'doc_id': '725ec671057ef790ad582509a8653584',\n",
         | 
| 146 | 
            +
                   "    'range': [887, 1347]}]},\n",
         | 
| 147 | 
            +
                   " 'id_hash_keys': ['content'],\n",
         | 
| 148 | 
            +
                   " 'id': '109a29bb227b1aaa5b784e972d8e1e3e',\n",
         | 
| 149 | 
            +
                   " 'vector': [-0.07318115,\n",
         | 
| 150 | 
            +
                   "  0.087646484,\n",
         | 
| 151 | 
            +
                   "  0.03274536,\n",
         | 
| 152 | 
            +
                   "  0.034942627,\n",
         | 
| 153 | 
            +
                   "  0.097961426,\n",
         | 
| 154 | 
            +
                   "  '...']}"
         | 
| 155 | 
            +
                  ]
         | 
| 156 | 
            +
                 },
         | 
| 157 | 
            +
                 "execution_count": 6,
         | 
| 158 | 
            +
                 "metadata": {},
         | 
| 159 | 
            +
                 "output_type": "execute_result"
         | 
| 160 | 
            +
                }
         | 
| 161 | 
            +
               ],
         | 
| 162 | 
            +
               "source": [
         | 
| 163 | 
            +
                "doc = document.copy()\n",
         | 
| 164 | 
            +
                "doc['vector'] = doc['vector'][:5] + ['...']\n",
         | 
| 165 | 
            +
                "doc"
         | 
| 166 | 
            +
               ]
         | 
| 167 | 
            +
              },
         | 
| 168 | 
            +
              {
         | 
| 169 | 
            +
               "cell_type": "markdown",
         | 
| 170 | 
            +
               "id": "676f644c-fb09-4d17-89ba-30c92aad8777",
         | 
| 171 | 
            +
               "metadata": {},
         | 
| 172 | 
            +
               "source": [
         | 
| 173 | 
            +
                "Instantiate our `DocumentStore`. Note that Im saving this to disk, this is for portability which is good considering I want to move from this ec2 instance into a Hugging Face Space. \n",
         | 
| 174 | 
            +
                "\n",
         | 
| 175 | 
            +
                "Note that if you are doing this at scale, you should use a proper instance and not saving to file. You should also take a [measured ingestion](https://qdrant.tech/documentation/tutorials/bulk-upload/) approach instead of using a convenient loader. "
         | 
| 176 | 
            +
               ]
         | 
| 177 | 
            +
              },
         | 
| 178 | 
            +
              {
         | 
| 179 | 
            +
               "cell_type": "code",
         | 
| 180 | 
            +
               "execution_count": 7,
         | 
| 181 | 
            +
               "id": "78033b87-8f68-4a44-899e-36fa8167cacf",
         | 
| 182 | 
            +
               "metadata": {
         | 
| 183 | 
            +
                "tags": []
         | 
| 184 | 
            +
               },
         | 
| 185 | 
            +
               "outputs": [],
         | 
| 186 | 
            +
               "source": [
         | 
| 187 | 
            +
                "from lancedb.embeddings.registry import EmbeddingFunctionRegistry\n",
         | 
| 188 | 
            +
                "from lancedb.embeddings.sentence_transformers import SentenceTransformerEmbeddings\n",
         | 
| 189 | 
            +
                "\n",
         | 
| 190 | 
            +
                "\n",
         | 
| 191 | 
            +
                "db = lancedb.connect(proj_dir/\".lancedb\")\n",
         | 
| 192 | 
            +
                "tbl = db.create_table('arabic-wiki', [document])"
         | 
| 193 | 
            +
               ]
         | 
| 194 | 
            +
              },
         | 
| 195 | 
            +
              {
         | 
| 196 | 
            +
               "cell_type": "code",
         | 
| 197 | 
            +
               "execution_count": 8,
         | 
| 198 | 
            +
               "id": "21d5fa58-519e-4a23-9fc6-eed31e4723b5",
         | 
| 199 | 
            +
               "metadata": {
         | 
| 200 | 
            +
                "tags": []
         | 
| 201 | 
            +
               },
         | 
| 202 | 
            +
               "outputs": [
         | 
| 203 | 
            +
                {
         | 
| 204 | 
            +
                 "data": {
         | 
| 205 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 206 | 
            +
                   "model_id": "789efc342218412aa31d5a5a74b34c52",
         | 
| 207 | 
            +
                   "version_major": 2,
         | 
| 208 | 
            +
                   "version_minor": 0
         | 
| 209 | 
            +
                  },
         | 
| 210 | 
            +
                  "text/plain": [
         | 
| 211 | 
            +
                   "Wiki Files:   0%|          | 0/23 [00:00<?, ?it/s]"
         | 
| 212 | 
            +
                  ]
         | 
| 213 | 
            +
                 },
         | 
| 214 | 
            +
                 "metadata": {},
         | 
| 215 | 
            +
                 "output_type": "display_data"
         | 
| 216 | 
            +
                },
         | 
| 217 | 
            +
                {
         | 
| 218 | 
            +
                 "name": "stdout",
         | 
| 219 | 
            +
                 "output_type": "stream",
         | 
| 220 | 
            +
                 "text": [
         | 
| 221 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_1.ndjson\n",
         | 
| 222 | 
            +
                  "Read documents\n"
         | 
| 223 | 
            +
                 ]
         | 
| 224 | 
            +
                },
         | 
| 225 | 
            +
                {
         | 
| 226 | 
            +
                 "data": {
         | 
| 227 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 228 | 
            +
                   "model_id": "5bcf4a53ecaf471589d35588047969ea",
         | 
| 229 | 
            +
                   "version_major": 2,
         | 
| 230 | 
            +
                   "version_minor": 0
         | 
| 231 | 
            +
                  },
         | 
| 232 | 
            +
                  "text/plain": [
         | 
| 233 | 
            +
                   "  0%|          | 0/243068 [00:00<?, ?it/s]"
         | 
| 234 | 
            +
                  ]
         | 
| 235 | 
            +
                 },
         | 
| 236 | 
            +
                 "metadata": {},
         | 
| 237 | 
            +
                 "output_type": "display_data"
         | 
| 238 | 
            +
                },
         | 
| 239 | 
            +
                {
         | 
| 240 | 
            +
                 "name": "stdout",
         | 
| 241 | 
            +
                 "output_type": "stream",
         | 
| 242 | 
            +
                 "text": [
         | 
| 243 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_1.ndjson\n",
         | 
| 244 | 
            +
                  "Added documents\n",
         | 
| 245 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_2.ndjson\n",
         | 
| 246 | 
            +
                  "Read documents\n"
         | 
| 247 | 
            +
                 ]
         | 
| 248 | 
            +
                },
         | 
| 249 | 
            +
                {
         | 
| 250 | 
            +
                 "data": {
         | 
| 251 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 252 | 
            +
                   "model_id": "763e45a7657e40288807556b1eb6c598",
         | 
| 253 | 
            +
                   "version_major": 2,
         | 
| 254 | 
            +
                   "version_minor": 0
         | 
| 255 | 
            +
                  },
         | 
| 256 | 
            +
                  "text/plain": [
         | 
| 257 | 
            +
                   "  0%|          | 0/104065 [00:00<?, ?it/s]"
         | 
| 258 | 
            +
                  ]
         | 
| 259 | 
            +
                 },
         | 
| 260 | 
            +
                 "metadata": {},
         | 
| 261 | 
            +
                 "output_type": "display_data"
         | 
| 262 | 
            +
                },
         | 
| 263 | 
            +
                {
         | 
| 264 | 
            +
                 "name": "stdout",
         | 
| 265 | 
            +
                 "output_type": "stream",
         | 
| 266 | 
            +
                 "text": [
         | 
| 267 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_2.ndjson\n",
         | 
| 268 | 
            +
                  "Added documents\n",
         | 
| 269 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_3.ndjson\n",
         | 
| 270 | 
            +
                  "Read documents\n"
         | 
| 271 | 
            +
                 ]
         | 
| 272 | 
            +
                },
         | 
| 273 | 
            +
                {
         | 
| 274 | 
            +
                 "data": {
         | 
| 275 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 276 | 
            +
                   "model_id": "6df7e0f7acfd409dbbaa04f9a21f6e18",
         | 
| 277 | 
            +
                   "version_major": 2,
         | 
| 278 | 
            +
                   "version_minor": 0
         | 
| 279 | 
            +
                  },
         | 
| 280 | 
            +
                  "text/plain": [
         | 
| 281 | 
            +
                   "  0%|          | 0/123154 [00:00<?, ?it/s]"
         | 
| 282 | 
            +
                  ]
         | 
| 283 | 
            +
                 },
         | 
| 284 | 
            +
                 "metadata": {},
         | 
| 285 | 
            +
                 "output_type": "display_data"
         | 
| 286 | 
            +
                },
         | 
| 287 | 
            +
                {
         | 
| 288 | 
            +
                 "name": "stdout",
         | 
| 289 | 
            +
                 "output_type": "stream",
         | 
| 290 | 
            +
                 "text": [
         | 
| 291 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_3.ndjson\n",
         | 
| 292 | 
            +
                  "Added documents\n",
         | 
| 293 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_4.ndjson\n",
         | 
| 294 | 
            +
                  "Read documents\n"
         | 
| 295 | 
            +
                 ]
         | 
| 296 | 
            +
                },
         | 
| 297 | 
            +
                {
         | 
| 298 | 
            +
                 "data": {
         | 
| 299 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 300 | 
            +
                   "model_id": "87a7b93d85964254b7ae106795e55cbe",
         | 
| 301 | 
            +
                   "version_major": 2,
         | 
| 302 | 
            +
                   "version_minor": 0
         | 
| 303 | 
            +
                  },
         | 
| 304 | 
            +
                  "text/plain": [
         | 
| 305 | 
            +
                   "  0%|          | 0/135965 [00:00<?, ?it/s]"
         | 
| 306 | 
            +
                  ]
         | 
| 307 | 
            +
                 },
         | 
| 308 | 
            +
                 "metadata": {},
         | 
| 309 | 
            +
                 "output_type": "display_data"
         | 
| 310 | 
            +
                },
         | 
| 311 | 
            +
                {
         | 
| 312 | 
            +
                 "name": "stdout",
         | 
| 313 | 
            +
                 "output_type": "stream",
         | 
| 314 | 
            +
                 "text": [
         | 
| 315 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_4.ndjson\n",
         | 
| 316 | 
            +
                  "Added documents\n",
         | 
| 317 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_5.ndjson\n",
         | 
| 318 | 
            +
                  "Read documents\n"
         | 
| 319 | 
            +
                 ]
         | 
| 320 | 
            +
                },
         | 
| 321 | 
            +
                {
         | 
| 322 | 
            +
                 "data": {
         | 
| 323 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 324 | 
            +
                   "model_id": "b4c9eebb1be24e42885df1d4444c4856",
         | 
| 325 | 
            +
                   "version_major": 2,
         | 
| 326 | 
            +
                   "version_minor": 0
         | 
| 327 | 
            +
                  },
         | 
| 328 | 
            +
                  "text/plain": [
         | 
| 329 | 
            +
                   "  0%|          | 0/99138 [00:00<?, ?it/s]"
         | 
| 330 | 
            +
                  ]
         | 
| 331 | 
            +
                 },
         | 
| 332 | 
            +
                 "metadata": {},
         | 
| 333 | 
            +
                 "output_type": "display_data"
         | 
| 334 | 
            +
                },
         | 
| 335 | 
            +
                {
         | 
| 336 | 
            +
                 "name": "stdout",
         | 
| 337 | 
            +
                 "output_type": "stream",
         | 
| 338 | 
            +
                 "text": [
         | 
| 339 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_5.ndjson\n",
         | 
| 340 | 
            +
                  "Added documents\n",
         | 
| 341 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_6.ndjson\n",
         | 
| 342 | 
            +
                  "Read documents\n"
         | 
| 343 | 
            +
                 ]
         | 
| 344 | 
            +
                },
         | 
| 345 | 
            +
                {
         | 
| 346 | 
            +
                 "data": {
         | 
| 347 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 348 | 
            +
                   "model_id": "feb88bc980534ca2bb7545784f9080df",
         | 
| 349 | 
            +
                   "version_major": 2,
         | 
| 350 | 
            +
                   "version_minor": 0
         | 
| 351 | 
            +
                  },
         | 
| 352 | 
            +
                  "text/plain": [
         | 
| 353 | 
            +
                   "  0%|          | 0/83678 [00:00<?, ?it/s]"
         | 
| 354 | 
            +
                  ]
         | 
| 355 | 
            +
                 },
         | 
| 356 | 
            +
                 "metadata": {},
         | 
| 357 | 
            +
                 "output_type": "display_data"
         | 
| 358 | 
            +
                },
         | 
| 359 | 
            +
                {
         | 
| 360 | 
            +
                 "name": "stdout",
         | 
| 361 | 
            +
                 "output_type": "stream",
         | 
| 362 | 
            +
                 "text": [
         | 
| 363 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_6.ndjson\n",
         | 
| 364 | 
            +
                  "Added documents\n",
         | 
| 365 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_7.ndjson\n",
         | 
| 366 | 
            +
                  "Read documents\n"
         | 
| 367 | 
            +
                 ]
         | 
| 368 | 
            +
                },
         | 
| 369 | 
            +
                {
         | 
| 370 | 
            +
                 "data": {
         | 
| 371 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 372 | 
            +
                   "model_id": "7ae8940509a94c17b209a783319af0b5",
         | 
| 373 | 
            +
                   "version_major": 2,
         | 
| 374 | 
            +
                   "version_minor": 0
         | 
| 375 | 
            +
                  },
         | 
| 376 | 
            +
                  "text/plain": [
         | 
| 377 | 
            +
                   "  0%|          | 0/30573 [00:00<?, ?it/s]"
         | 
| 378 | 
            +
                  ]
         | 
| 379 | 
            +
                 },
         | 
| 380 | 
            +
                 "metadata": {},
         | 
| 381 | 
            +
                 "output_type": "display_data"
         | 
| 382 | 
            +
                },
         | 
| 383 | 
            +
                {
         | 
| 384 | 
            +
                 "name": "stdout",
         | 
| 385 | 
            +
                 "output_type": "stream",
         | 
| 386 | 
            +
                 "text": [
         | 
| 387 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_7.ndjson\n",
         | 
| 388 | 
            +
                  "Added documents\n",
         | 
| 389 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_8.ndjson\n",
         | 
| 390 | 
            +
                  "Read documents\n"
         | 
| 391 | 
            +
                 ]
         | 
| 392 | 
            +
                },
         | 
| 393 | 
            +
                {
         | 
| 394 | 
            +
                 "data": {
         | 
| 395 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 396 | 
            +
                   "model_id": "edbbeb596b034859856b525755331021",
         | 
| 397 | 
            +
                   "version_major": 2,
         | 
| 398 | 
            +
                   "version_minor": 0
         | 
| 399 | 
            +
                  },
         | 
| 400 | 
            +
                  "text/plain": [
         | 
| 401 | 
            +
                   "  0%|          | 0/78957 [00:00<?, ?it/s]"
         | 
| 402 | 
            +
                  ]
         | 
| 403 | 
            +
                 },
         | 
| 404 | 
            +
                 "metadata": {},
         | 
| 405 | 
            +
                 "output_type": "display_data"
         | 
| 406 | 
            +
                },
         | 
| 407 | 
            +
                {
         | 
| 408 | 
            +
                 "name": "stdout",
         | 
| 409 | 
            +
                 "output_type": "stream",
         | 
| 410 | 
            +
                 "text": [
         | 
| 411 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_8.ndjson\n",
         | 
| 412 | 
            +
                  "Added documents\n",
         | 
| 413 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_9.ndjson\n",
         | 
| 414 | 
            +
                  "Read documents\n"
         | 
| 415 | 
            +
                 ]
         | 
| 416 | 
            +
                },
         | 
| 417 | 
            +
                {
         | 
| 418 | 
            +
                 "data": {
         | 
| 419 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 420 | 
            +
                   "model_id": "1c0c7b32f0c14e77b3567dae6dea7c0f",
         | 
| 421 | 
            +
                   "version_major": 2,
         | 
| 422 | 
            +
                   "version_minor": 0
         | 
| 423 | 
            +
                  },
         | 
| 424 | 
            +
                  "text/plain": [
         | 
| 425 | 
            +
                   "  0%|          | 0/86327 [00:00<?, ?it/s]"
         | 
| 426 | 
            +
                  ]
         | 
| 427 | 
            +
                 },
         | 
| 428 | 
            +
                 "metadata": {},
         | 
| 429 | 
            +
                 "output_type": "display_data"
         | 
| 430 | 
            +
                },
         | 
| 431 | 
            +
                {
         | 
| 432 | 
            +
                 "name": "stdout",
         | 
| 433 | 
            +
                 "output_type": "stream",
         | 
| 434 | 
            +
                 "text": [
         | 
| 435 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_9.ndjson\n",
         | 
| 436 | 
            +
                  "Added documents\n",
         | 
| 437 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_10.ndjson\n",
         | 
| 438 | 
            +
                  "Read documents\n"
         | 
| 439 | 
            +
                 ]
         | 
| 440 | 
            +
                },
         | 
| 441 | 
            +
                {
         | 
| 442 | 
            +
                 "data": {
         | 
| 443 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 444 | 
            +
                   "model_id": "193cc9f4f4ce4e22baf682bb31d77f13",
         | 
| 445 | 
            +
                   "version_major": 2,
         | 
| 446 | 
            +
                   "version_minor": 0
         | 
| 447 | 
            +
                  },
         | 
| 448 | 
            +
                  "text/plain": [
         | 
| 449 | 
            +
                   "  0%|          | 0/83111 [00:00<?, ?it/s]"
         | 
| 450 | 
            +
                  ]
         | 
| 451 | 
            +
                 },
         | 
| 452 | 
            +
                 "metadata": {},
         | 
| 453 | 
            +
                 "output_type": "display_data"
         | 
| 454 | 
            +
                },
         | 
| 455 | 
            +
                {
         | 
| 456 | 
            +
                 "name": "stdout",
         | 
| 457 | 
            +
                 "output_type": "stream",
         | 
| 458 | 
            +
                 "text": [
         | 
| 459 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_10.ndjson\n",
         | 
| 460 | 
            +
                  "Added documents\n",
         | 
| 461 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_11.ndjson\n",
         | 
| 462 | 
            +
                  "Read documents\n"
         | 
| 463 | 
            +
                 ]
         | 
| 464 | 
            +
                },
         | 
| 465 | 
            +
                {
         | 
| 466 | 
            +
                 "data": {
         | 
| 467 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 468 | 
            +
                   "model_id": "e5c2e514cae1462896f856e625d61c2b",
         | 
| 469 | 
            +
                   "version_major": 2,
         | 
| 470 | 
            +
                   "version_minor": 0
         | 
| 471 | 
            +
                  },
         | 
| 472 | 
            +
                  "text/plain": [
         | 
| 473 | 
            +
                   "  0%|          | 0/92664 [00:00<?, ?it/s]"
         | 
| 474 | 
            +
                  ]
         | 
| 475 | 
            +
                 },
         | 
| 476 | 
            +
                 "metadata": {},
         | 
| 477 | 
            +
                 "output_type": "display_data"
         | 
| 478 | 
            +
                },
         | 
| 479 | 
            +
                {
         | 
| 480 | 
            +
                 "name": "stdout",
         | 
| 481 | 
            +
                 "output_type": "stream",
         | 
| 482 | 
            +
                 "text": [
         | 
| 483 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_11.ndjson\n",
         | 
| 484 | 
            +
                  "Added documents\n",
         | 
| 485 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_12.ndjson\n",
         | 
| 486 | 
            +
                  "Read documents\n"
         | 
| 487 | 
            +
                 ]
         | 
| 488 | 
            +
                },
         | 
| 489 | 
            +
                {
         | 
| 490 | 
            +
                 "data": {
         | 
| 491 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 492 | 
            +
                   "model_id": "818e7ebd889b4bbfa745904b5f132e48",
         | 
| 493 | 
            +
                   "version_major": 2,
         | 
| 494 | 
            +
                   "version_minor": 0
         | 
| 495 | 
            +
                  },
         | 
| 496 | 
            +
                  "text/plain": [
         | 
| 497 | 
            +
                   "  0%|          | 0/66404 [00:00<?, ?it/s]"
         | 
| 498 | 
            +
                  ]
         | 
| 499 | 
            +
                 },
         | 
| 500 | 
            +
                 "metadata": {},
         | 
| 501 | 
            +
                 "output_type": "display_data"
         | 
| 502 | 
            +
                },
         | 
| 503 | 
            +
                {
         | 
| 504 | 
            +
                 "name": "stdout",
         | 
| 505 | 
            +
                 "output_type": "stream",
         | 
| 506 | 
            +
                 "text": [
         | 
| 507 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_12.ndjson\n",
         | 
| 508 | 
            +
                  "Added documents\n",
         | 
| 509 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_13.ndjson\n",
         | 
| 510 | 
            +
                  "Read documents\n"
         | 
| 511 | 
            +
                 ]
         | 
| 512 | 
            +
                },
         | 
| 513 | 
            +
                {
         | 
| 514 | 
            +
                 "data": {
         | 
| 515 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 516 | 
            +
                   "model_id": "fe6268b0d85045da839a15f0dce577c9",
         | 
| 517 | 
            +
                   "version_major": 2,
         | 
| 518 | 
            +
                   "version_minor": 0
         | 
| 519 | 
            +
                  },
         | 
| 520 | 
            +
                  "text/plain": [
         | 
| 521 | 
            +
                   "  0%|          | 0/62844 [00:00<?, ?it/s]"
         | 
| 522 | 
            +
                  ]
         | 
| 523 | 
            +
                 },
         | 
| 524 | 
            +
                 "metadata": {},
         | 
| 525 | 
            +
                 "output_type": "display_data"
         | 
| 526 | 
            +
                },
         | 
| 527 | 
            +
                {
         | 
| 528 | 
            +
                 "name": "stdout",
         | 
| 529 | 
            +
                 "output_type": "stream",
         | 
| 530 | 
            +
                 "text": [
         | 
| 531 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_13.ndjson\n",
         | 
| 532 | 
            +
                  "Added documents\n",
         | 
| 533 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_14.ndjson\n",
         | 
| 534 | 
            +
                  "Read documents\n"
         | 
| 535 | 
            +
                 ]
         | 
| 536 | 
            +
                },
         | 
| 537 | 
            +
                {
         | 
| 538 | 
            +
                 "data": {
         | 
| 539 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 540 | 
            +
                   "model_id": "f67b03d9829545d8bfcbcdc55daac3a7",
         | 
| 541 | 
            +
                   "version_major": 2,
         | 
| 542 | 
            +
                   "version_minor": 0
         | 
| 543 | 
            +
                  },
         | 
| 544 | 
            +
                  "text/plain": [
         | 
| 545 | 
            +
                   "  0%|          | 0/59349 [00:00<?, ?it/s]"
         | 
| 546 | 
            +
                  ]
         | 
| 547 | 
            +
                 },
         | 
| 548 | 
            +
                 "metadata": {},
         | 
| 549 | 
            +
                 "output_type": "display_data"
         | 
| 550 | 
            +
                },
         | 
| 551 | 
            +
                {
         | 
| 552 | 
            +
                 "name": "stdout",
         | 
| 553 | 
            +
                 "output_type": "stream",
         | 
| 554 | 
            +
                 "text": [
         | 
| 555 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_14.ndjson\n",
         | 
| 556 | 
            +
                  "Added documents\n",
         | 
| 557 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_15.ndjson\n",
         | 
| 558 | 
            +
                  "Read documents\n"
         | 
| 559 | 
            +
                 ]
         | 
| 560 | 
            +
                },
         | 
| 561 | 
            +
                {
         | 
| 562 | 
            +
                 "data": {
         | 
| 563 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 564 | 
            +
                   "model_id": "95bd941e1516437ca7e7cb59a55971ca",
         | 
| 565 | 
            +
                   "version_major": 2,
         | 
| 566 | 
            +
                   "version_minor": 0
         | 
| 567 | 
            +
                  },
         | 
| 568 | 
            +
                  "text/plain": [
         | 
| 569 | 
            +
                   "  0%|          | 0/52554 [00:00<?, ?it/s]"
         | 
| 570 | 
            +
                  ]
         | 
| 571 | 
            +
                 },
         | 
| 572 | 
            +
                 "metadata": {},
         | 
| 573 | 
            +
                 "output_type": "display_data"
         | 
| 574 | 
            +
                },
         | 
| 575 | 
            +
                {
         | 
| 576 | 
            +
                 "name": "stdout",
         | 
| 577 | 
            +
                 "output_type": "stream",
         | 
| 578 | 
            +
                 "text": [
         | 
| 579 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_15.ndjson\n",
         | 
| 580 | 
            +
                  "Added documents\n",
         | 
| 581 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_16.ndjson\n",
         | 
| 582 | 
            +
                  "Read documents\n"
         | 
| 583 | 
            +
                 ]
         | 
| 584 | 
            +
                },
         | 
| 585 | 
            +
                {
         | 
| 586 | 
            +
                 "data": {
         | 
| 587 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 588 | 
            +
                   "model_id": "684b1247cf614817be09f34a2b349632",
         | 
| 589 | 
            +
                   "version_major": 2,
         | 
| 590 | 
            +
                   "version_minor": 0
         | 
| 591 | 
            +
                  },
         | 
| 592 | 
            +
                  "text/plain": [
         | 
| 593 | 
            +
                   "  0%|          | 0/34240 [00:00<?, ?it/s]"
         | 
| 594 | 
            +
                  ]
         | 
| 595 | 
            +
                 },
         | 
| 596 | 
            +
                 "metadata": {},
         | 
| 597 | 
            +
                 "output_type": "display_data"
         | 
| 598 | 
            +
                },
         | 
| 599 | 
            +
                {
         | 
| 600 | 
            +
                 "name": "stdout",
         | 
| 601 | 
            +
                 "output_type": "stream",
         | 
| 602 | 
            +
                 "text": [
         | 
| 603 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_16.ndjson\n",
         | 
| 604 | 
            +
                  "Added documents\n",
         | 
| 605 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_17.ndjson\n",
         | 
| 606 | 
            +
                  "Read documents\n"
         | 
| 607 | 
            +
                 ]
         | 
| 608 | 
            +
                },
         | 
| 609 | 
            +
                {
         | 
| 610 | 
            +
                 "data": {
         | 
| 611 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 612 | 
            +
                   "model_id": "d8c7f992f5064e5e83ec292a8e7c33bf",
         | 
| 613 | 
            +
                   "version_major": 2,
         | 
| 614 | 
            +
                   "version_minor": 0
         | 
| 615 | 
            +
                  },
         | 
| 616 | 
            +
                  "text/plain": [
         | 
| 617 | 
            +
                   "  0%|          | 0/35933 [00:00<?, ?it/s]"
         | 
| 618 | 
            +
                  ]
         | 
| 619 | 
            +
                 },
         | 
| 620 | 
            +
                 "metadata": {},
         | 
| 621 | 
            +
                 "output_type": "display_data"
         | 
| 622 | 
            +
                },
         | 
| 623 | 
            +
                {
         | 
| 624 | 
            +
                 "name": "stdout",
         | 
| 625 | 
            +
                 "output_type": "stream",
         | 
| 626 | 
            +
                 "text": [
         | 
| 627 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_17.ndjson\n",
         | 
| 628 | 
            +
                  "Added documents\n",
         | 
| 629 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_18.ndjson\n",
         | 
| 630 | 
            +
                  "Read documents\n"
         | 
| 631 | 
            +
                 ]
         | 
| 632 | 
            +
                },
         | 
| 633 | 
            +
                {
         | 
| 634 | 
            +
                 "data": {
         | 
| 635 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 636 | 
            +
                   "model_id": "5f7582025ad9462da77c0a57ba4a24f7",
         | 
| 637 | 
            +
                   "version_major": 2,
         | 
| 638 | 
            +
                   "version_minor": 0
         | 
| 639 | 
            +
                  },
         | 
| 640 | 
            +
                  "text/plain": [
         | 
| 641 | 
            +
                   "  0%|          | 0/64575 [00:00<?, ?it/s]"
         | 
| 642 | 
            +
                  ]
         | 
| 643 | 
            +
                 },
         | 
| 644 | 
            +
                 "metadata": {},
         | 
| 645 | 
            +
                 "output_type": "display_data"
         | 
| 646 | 
            +
                },
         | 
| 647 | 
            +
                {
         | 
| 648 | 
            +
                 "name": "stdout",
         | 
| 649 | 
            +
                 "output_type": "stream",
         | 
| 650 | 
            +
                 "text": [
         | 
| 651 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_18.ndjson\n",
         | 
| 652 | 
            +
                  "Added documents\n",
         | 
| 653 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_19.ndjson\n",
         | 
| 654 | 
            +
                  "Read documents\n"
         | 
| 655 | 
            +
                 ]
         | 
| 656 | 
            +
                },
         | 
| 657 | 
            +
                {
         | 
| 658 | 
            +
                 "data": {
         | 
| 659 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 660 | 
            +
                   "model_id": "e574e5ee70564cf78684eae0ca1ea6c4",
         | 
| 661 | 
            +
                   "version_major": 2,
         | 
| 662 | 
            +
                   "version_minor": 0
         | 
| 663 | 
            +
                  },
         | 
| 664 | 
            +
                  "text/plain": [
         | 
| 665 | 
            +
                   "  0%|          | 0/94244 [00:00<?, ?it/s]"
         | 
| 666 | 
            +
                  ]
         | 
| 667 | 
            +
                 },
         | 
| 668 | 
            +
                 "metadata": {},
         | 
| 669 | 
            +
                 "output_type": "display_data"
         | 
| 670 | 
            +
                },
         | 
| 671 | 
            +
                {
         | 
| 672 | 
            +
                 "name": "stdout",
         | 
| 673 | 
            +
                 "output_type": "stream",
         | 
| 674 | 
            +
                 "text": [
         | 
| 675 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_19.ndjson\n",
         | 
| 676 | 
            +
                  "Added documents\n",
         | 
| 677 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_20.ndjson\n",
         | 
| 678 | 
            +
                  "Read documents\n"
         | 
| 679 | 
            +
                 ]
         | 
| 680 | 
            +
                },
         | 
| 681 | 
            +
                {
         | 
| 682 | 
            +
                 "data": {
         | 
| 683 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 684 | 
            +
                   "model_id": "21e50920d25047038bbad906e428ab5b",
         | 
| 685 | 
            +
                   "version_major": 2,
         | 
| 686 | 
            +
                   "version_minor": 0
         | 
| 687 | 
            +
                  },
         | 
| 688 | 
            +
                  "text/plain": [
         | 
| 689 | 
            +
                   "  0%|          | 0/124472 [00:00<?, ?it/s]"
         | 
| 690 | 
            +
                  ]
         | 
| 691 | 
            +
                 },
         | 
| 692 | 
            +
                 "metadata": {},
         | 
| 693 | 
            +
                 "output_type": "display_data"
         | 
| 694 | 
            +
                },
         | 
| 695 | 
            +
                {
         | 
| 696 | 
            +
                 "name": "stdout",
         | 
| 697 | 
            +
                 "output_type": "stream",
         | 
| 698 | 
            +
                 "text": [
         | 
| 699 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_20.ndjson\n",
         | 
| 700 | 
            +
                  "Added documents\n",
         | 
| 701 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_21.ndjson\n",
         | 
| 702 | 
            +
                  "Read documents\n"
         | 
| 703 | 
            +
                 ]
         | 
| 704 | 
            +
                },
         | 
| 705 | 
            +
                {
         | 
| 706 | 
            +
                 "data": {
         | 
| 707 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 708 | 
            +
                   "model_id": "da30c5cd7cc14c47a739a1a2e410b012",
         | 
| 709 | 
            +
                   "version_major": 2,
         | 
| 710 | 
            +
                   "version_minor": 0
         | 
| 711 | 
            +
                  },
         | 
| 712 | 
            +
                  "text/plain": [
         | 
| 713 | 
            +
                   "  0%|          | 0/121849 [00:00<?, ?it/s]"
         | 
| 714 | 
            +
                  ]
         | 
| 715 | 
            +
                 },
         | 
| 716 | 
            +
                 "metadata": {},
         | 
| 717 | 
            +
                 "output_type": "display_data"
         | 
| 718 | 
            +
                },
         | 
| 719 | 
            +
                {
         | 
| 720 | 
            +
                 "name": "stdout",
         | 
| 721 | 
            +
                 "output_type": "stream",
         | 
| 722 | 
            +
                 "text": [
         | 
| 723 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_21.ndjson\n",
         | 
| 724 | 
            +
                  "Added documents\n",
         | 
| 725 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_22.ndjson\n",
         | 
| 726 | 
            +
                  "Read documents\n"
         | 
| 727 | 
            +
                 ]
         | 
| 728 | 
            +
                },
         | 
| 729 | 
            +
                {
         | 
| 730 | 
            +
                 "data": {
         | 
| 731 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 732 | 
            +
                   "model_id": "8efe4d8bf6f5437e88415819b0b88114",
         | 
| 733 | 
            +
                   "version_major": 2,
         | 
| 734 | 
            +
                   "version_minor": 0
         | 
| 735 | 
            +
                  },
         | 
| 736 | 
            +
                  "text/plain": [
         | 
| 737 | 
            +
                   "  0%|          | 0/147110 [00:00<?, ?it/s]"
         | 
| 738 | 
            +
                  ]
         | 
| 739 | 
            +
                 },
         | 
| 740 | 
            +
                 "metadata": {},
         | 
| 741 | 
            +
                 "output_type": "display_data"
         | 
| 742 | 
            +
                },
         | 
| 743 | 
            +
                {
         | 
| 744 | 
            +
                 "name": "stdout",
         | 
| 745 | 
            +
                 "output_type": "stream",
         | 
| 746 | 
            +
                 "text": [
         | 
| 747 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_22.ndjson\n",
         | 
| 748 | 
            +
                  "Added documents\n",
         | 
| 749 | 
            +
                  "Reading documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_23.ndjson\n",
         | 
| 750 | 
            +
                  "Read documents\n"
         | 
| 751 | 
            +
                 ]
         | 
| 752 | 
            +
                },
         | 
| 753 | 
            +
                {
         | 
| 754 | 
            +
                 "data": {
         | 
| 755 | 
            +
                  "application/vnd.jupyter.widget-view+json": {
         | 
| 756 | 
            +
                   "model_id": "7bda66b6033346559907a3bb56a95957",
         | 
| 757 | 
            +
                   "version_major": 2,
         | 
| 758 | 
            +
                   "version_minor": 0
         | 
| 759 | 
            +
                  },
         | 
| 760 | 
            +
                  "text/plain": [
         | 
| 761 | 
            +
                   "  0%|          | 0/70322 [00:00<?, ?it/s]"
         | 
| 762 | 
            +
                  ]
         | 
| 763 | 
            +
                 },
         | 
| 764 | 
            +
                 "metadata": {},
         | 
| 765 | 
            +
                 "output_type": "display_data"
         | 
| 766 | 
            +
                },
         | 
| 767 | 
            +
                {
         | 
| 768 | 
            +
                 "name": "stdout",
         | 
| 769 | 
            +
                 "output_type": "stream",
         | 
| 770 | 
            +
                 "text": [
         | 
| 771 | 
            +
                  "Adding documents /home/ec2-user/arabic-wiki/data/embedded/ar_wiki_23.ndjson\n",
         | 
| 772 | 
            +
                  "Added documents\n"
         | 
| 773 | 
            +
                 ]
         | 
| 774 | 
            +
                },
         | 
| 775 | 
            +
                {
         | 
| 776 | 
            +
                 "name": "stderr",
         | 
| 777 | 
            +
                 "output_type": "stream",
         | 
| 778 | 
            +
                 "text": [
         | 
| 779 | 
            +
                  "  0%|                                                                                                                | 0/50 [00:00<?, ?it/s]/opt/conda/envs/arwiki/lib/python3.10/site-packages/lance/torch/kmeans.py:232: UserWarning: index_reduce() is in beta and the API may change at any time. (Triggered internally at ../aten/src/ATen/native/cuda/Indexing.cu:1047.)\n",
         | 
| 780 | 
            +
                  "  new_centroids.index_reduce_(\n",
         | 
| 781 | 
            +
                  " 34%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ                                                                    | 17/50 [01:26<02:47,  5.06s/it]\n",
         | 
| 782 | 
            +
                  "[2023-10-31T18:47:43Z WARN  lance_linalg::kmeans] KMeans: cluster 108 is empty\n",
         | 
| 783 | 
            +
                  "[2023-10-31T18:52:24Z WARN  lance_linalg::kmeans] KMeans: cluster 227 is empty\n",
         | 
| 784 | 
            +
                  "[2023-10-31T18:57:24Z WARN  lance_linalg::kmeans] KMeans: cluster 167 is empty\n",
         | 
| 785 | 
            +
                  "[2023-10-31T19:14:19Z WARN  lance_linalg::kmeans] KMeans: cluster 160 is empty\n"
         | 
| 786 | 
            +
                 ]
         | 
| 787 | 
            +
                },
         | 
| 788 | 
            +
                {
         | 
| 789 | 
            +
                 "name": "stdout",
         | 
| 790 | 
            +
                 "output_type": "stream",
         | 
| 791 | 
            +
                 "text": [
         | 
| 792 | 
            +
                  "CPU times: user 2h 2min 51s, sys: 1min 38s, total: 2h 4min 30s\n",
         | 
| 793 | 
            +
                  "Wall time: 42min 56s\n"
         | 
| 794 | 
            +
                 ]
         | 
| 795 | 
            +
                }
         | 
| 796 | 
            +
               ],
         | 
| 797 | 
            +
               "source": [
         | 
| 798 | 
            +
                "%%time\n",
         | 
| 799 | 
            +
                "for file_in in tqdm(files_in, desc='Wiki Files: '):\n",
         | 
| 800 | 
            +
                "\n",
         | 
| 801 | 
            +
                "    tqdm.write(f\"Reading documents {str(file_in)}\")\n",
         | 
| 802 | 
            +
                "    with open(file_in, 'r') as f:\n",
         | 
| 803 | 
            +
                "        documents = [json.loads(line) for line in f]\n",
         | 
| 804 | 
            +
                "    tqdm.write(f\"Read documents\")\n",
         | 
| 805 | 
            +
                "\n",
         | 
| 806 | 
            +
                "    for doc in tqdm(documents):\n",
         | 
| 807 | 
            +
                "        if 'embedding' in doc:\n",
         | 
| 808 | 
            +
                "            doc['vector'] = doc.pop('embedding')\n",
         | 
| 809 | 
            +
                "    \n",
         | 
| 810 | 
            +
                "    tqdm.write(f\"Adding documents {str(file_in)}\")\n",
         | 
| 811 | 
            +
                "    tbl.add(documents)\n",
         | 
| 812 | 
            +
                "    tqdm.write(f\"Added documents\")\n",
         | 
| 813 | 
            +
                "tbl.create_index(\n",
         | 
| 814 | 
            +
                "     num_partitions=1024,\n",
         | 
| 815 | 
            +
                "     num_sub_vectors=384,\n",
         | 
| 816 | 
            +
                "     accelerator=\"cuda\"\n",
         | 
| 817 | 
            +
                ")\n",
         | 
| 818 | 
            +
                "    "
         | 
| 819 | 
            +
               ]
         | 
| 820 | 
            +
              },
         | 
| 821 | 
            +
              {
         | 
| 822 | 
            +
               "cell_type": "code",
         | 
| 823 | 
            +
               "execution_count": 9,
         | 
| 824 | 
            +
               "id": "8ad72ca5-6ca3-43e3-bf2c-7461906576b9",
         | 
| 825 | 
            +
               "metadata": {
         | 
| 826 | 
            +
                "tags": []
         | 
| 827 | 
            +
               },
         | 
| 828 | 
            +
               "outputs": [],
         | 
| 829 | 
            +
               "source": [
         | 
| 830 | 
            +
                "from sentence_transformers import SentenceTransformer\n",
         | 
| 831 | 
            +
                "\n",
         | 
| 832 | 
            +
                "name=\"sentence-transformers/paraphrase-multilingual-minilm-l12-v2\"\n",
         | 
| 833 | 
            +
                "model = SentenceTransformer(name)\n",
         | 
| 834 | 
            +
                "\n",
         | 
| 835 | 
            +
                "# used for both training and querying\n",
         | 
| 836 | 
            +
                "def embed_func(batch):\n",
         | 
| 837 | 
            +
                "    return [model.encode(sentence) for sentence in batch]"
         | 
| 838 | 
            +
               ]
         | 
| 839 | 
            +
              },
         | 
| 840 | 
            +
              {
         | 
| 841 | 
            +
               "cell_type": "code",
         | 
| 842 | 
            +
               "execution_count": 11,
         | 
| 843 | 
            +
               "id": "41ab5a84-8984-4726-acd8-57ca0fce9e76",
         | 
| 844 | 
            +
               "metadata": {
         | 
| 845 | 
            +
                "tags": []
         | 
| 846 | 
            +
               },
         | 
| 847 | 
            +
               "outputs": [
         | 
| 848 | 
            +
                {
         | 
| 849 | 
            +
                 "data": {
         | 
| 850 | 
            +
                  "text/plain": [
         | 
| 851 | 
            +
                   "['ุจููู',\n",
         | 
| 852 | 
            +
                   " 'ูููู
ููุบ',\n",
         | 
| 853 | 
            +
                   " 'ูููุบุดูุง',\n",
         | 
| 854 | 
            +
                   " 'ุชุงู ููุงู',\n",
         | 
| 855 | 
            +
                   " 'ุชุดูุบุชุดู',\n",
         | 
| 856 | 
            +
                   " 'ุดุงูุบูุงู',\n",
         | 
| 857 | 
            +
                   " 'ุณูุบุงููุฑุฉ',\n",
         | 
| 858 | 
            +
                   " 'ุฏูุชุง ููุฑ ูุงูุบุชุณู',\n",
         | 
| 859 | 
            +
                   " 'ุชุดุงูุบุชุดูู',\n",
         | 
| 860 | 
            +
                   " 'ุจููู']"
         | 
| 861 | 
            +
                  ]
         | 
| 862 | 
            +
                 },
         | 
| 863 | 
            +
                 "execution_count": 11,
         | 
| 864 | 
            +
                 "metadata": {},
         | 
| 865 | 
            +
                 "output_type": "execute_result"
         | 
| 866 | 
            +
                }
         | 
| 867 | 
            +
               ],
         | 
| 868 | 
            +
               "source": [
         | 
| 869 | 
            +
                "query = \"What is the capital of China? I think it's Singapore.\"\n",
         | 
| 870 | 
            +
                "query_vector = embed_func([query])[0]\n",
         | 
| 871 | 
            +
                "[doc['meta']['title'] for doc in tbl.search(query_vector).limit(10).to_list()]"
         | 
| 872 | 
            +
               ]
         | 
| 873 | 
            +
              },
         | 
| 874 | 
            +
              {
         | 
| 875 | 
            +
               "cell_type": "code",
         | 
| 876 | 
            +
               "execution_count": null,
         | 
| 877 | 
            +
               "id": "c0abad86-652a-4d7d-b118-21dc23a7a5c5",
         | 
| 878 | 
            +
               "metadata": {},
         | 
| 879 | 
            +
               "outputs": [],
         | 
| 880 | 
            +
               "source": []
         | 
| 881 | 
            +
              }
         | 
| 882 | 
            +
             ],
         | 
| 883 | 
            +
             "metadata": {
         | 
| 884 | 
            +
              "kernelspec": {
         | 
| 885 | 
            +
               "display_name": "Python 3 (ipykernel)",
         | 
| 886 | 
            +
               "language": "python",
         | 
| 887 | 
            +
               "name": "python3"
         | 
| 888 | 
            +
              },
         | 
| 889 | 
            +
              "language_info": {
         | 
| 890 | 
            +
               "codemirror_mode": {
         | 
| 891 | 
            +
                "name": "ipython",
         | 
| 892 | 
            +
                "version": 3
         | 
| 893 | 
            +
               },
         | 
| 894 | 
            +
               "file_extension": ".py",
         | 
| 895 | 
            +
               "mimetype": "text/x-python",
         | 
| 896 | 
            +
               "name": "python",
         | 
| 897 | 
            +
               "nbconvert_exporter": "python",
         | 
| 898 | 
            +
               "pygments_lexer": "ipython3",
         | 
| 899 | 
            +
               "version": "3.10.13"
         | 
| 900 | 
            +
              }
         | 
| 901 | 
            +
             },
         | 
| 902 | 
            +
             "nbformat": 4,
         | 
| 903 | 
            +
             "nbformat_minor": 5
         | 
| 904 | 
            +
            }
         | 
