Update app.py
Browse files
app.py
CHANGED
|
@@ -35,6 +35,33 @@ def get_hf_model_args(hf_model_name_or_path, num_layers, hidden_size, num_attent
|
|
| 35 |
"sequence_length": sequence_length,
|
| 36 |
}, None
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# ---- Parameter Calculation ---- #
|
| 39 |
def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
|
| 40 |
if tied_embeddings:
|
|
@@ -67,50 +94,38 @@ def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_l
|
|
| 67 |
Total Params in the Model: {convert_params(total_params)}
|
| 68 |
"""
|
| 69 |
|
| 70 |
-
# ---- Memory Calculation ---- #
|
| 71 |
-
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
| 72 |
-
model_params, hf_error = get_hf_model_args(hf_model_name_or_path, num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length)
|
| 73 |
-
|
| 74 |
-
if hf_error:
|
| 75 |
-
return hf_error
|
| 76 |
-
|
| 77 |
-
num_layers = model_params["num_layers"]
|
| 78 |
-
hidden_size = model_params["hidden_size"]
|
| 79 |
-
num_attention_heads = model_params["num_attention_heads"]
|
| 80 |
-
vocab_size = model_params["vocab_size"]
|
| 81 |
-
sequence_length = model_params["sequence_length"]
|
| 82 |
-
|
| 83 |
-
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
|
| 84 |
-
embed_params = 2 * vocab_size * hidden_size
|
| 85 |
-
positional_params = hidden_size * sequence_length
|
| 86 |
-
ln_params = 8 * hidden_size * num_layers + (2 * hidden_size)
|
| 87 |
-
attention_params = int(2 * (1 + ffn_expansion_factor) * num_layers * hidden_size * hidden_size)
|
| 88 |
-
mlp_params = ffn_expansion_factor * num_layers * hidden_size * hidden_size
|
| 89 |
-
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
|
| 90 |
-
|
| 91 |
-
bytes_per_param = 2 if is_mixed_precision else 4
|
| 92 |
-
model_mem = total_params * bytes_per_param
|
| 93 |
-
per_gpu_mem_gib = (model_mem / (tensor_parallel_size * pipeline_parallel_size)) / 1024**3 + misc_mem_gib
|
| 94 |
-
|
| 95 |
-
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
| 96 |
-
|
| 97 |
-
# Combine param calculation and memory calculation in the result
|
| 98 |
-
def calculate_model(hf_model_name_or_path, tied_embeddings, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, num_mlp_linears, kv_size_ratio, moe, num_experts, expert_interval, topk, is_mixed_precision, misc_mem_gib):
|
| 99 |
-
param_result = calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio)
|
| 100 |
-
mem_result = calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib)
|
| 101 |
-
return param_result + "\n" + mem_result
|
| 102 |
-
|
| 103 |
# ---- Gradio Interface ---- #
|
| 104 |
with gr.Blocks() as demo:
|
| 105 |
with gr.Tabs():
|
| 106 |
-
|
|
|
|
| 107 |
hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path (optional)", value="")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
| 109 |
tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
|
| 110 |
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
| 111 |
sequence_length = gr.Number(label="Sequence Length", value=2048)
|
| 112 |
num_layers = gr.Number(label="Number of Layers", value=44)
|
| 113 |
-
num_attention_heads = gr.Number(label="Number of Attention Heads", value=64)
|
| 114 |
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
|
| 115 |
num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2)
|
| 116 |
kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0)
|
|
@@ -121,17 +136,10 @@ with gr.Blocks() as demo:
|
|
| 121 |
expert_interval = gr.Number(label="Expert Interval", value=1)
|
| 122 |
topk = gr.Number(label="Top k Routing", value=1)
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5)
|
| 130 |
-
|
| 131 |
-
result = gr.Textbox(label="Output", interactive=False)
|
| 132 |
-
calculate_button = gr.Button("Calculate")
|
| 133 |
-
calculate_button.click(calculate_model,
|
| 134 |
-
inputs=[hf_model_name_or_path, tied_embeddings, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, num_mlp_linears, kv_size_ratio, moe, num_experts, expert_interval, topk, is_mixed_precision, misc_mem_gib],
|
| 135 |
-
outputs=result)
|
| 136 |
|
| 137 |
demo.launch()
|
|
|
|
| 35 |
"sequence_length": sequence_length,
|
| 36 |
}, None
|
| 37 |
|
| 38 |
+
# ---- Memory Calculation ---- #
|
| 39 |
+
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
| 40 |
+
model_params, hf_error = get_hf_model_args(hf_model_name_or_path, num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length)
|
| 41 |
+
|
| 42 |
+
if hf_error:
|
| 43 |
+
return hf_error
|
| 44 |
+
|
| 45 |
+
num_layers = model_params["num_layers"]
|
| 46 |
+
hidden_size = model_params["hidden_size"]
|
| 47 |
+
num_attention_heads = model_params["num_attention_heads"]
|
| 48 |
+
vocab_size = model_params["vocab_size"]
|
| 49 |
+
sequence_length = model_params["sequence_length"]
|
| 50 |
+
|
| 51 |
+
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
|
| 52 |
+
embed_params = 2 * vocab_size * hidden_size
|
| 53 |
+
positional_params = hidden_size * sequence_length
|
| 54 |
+
ln_params = 8 * hidden_size * num_layers + (2 * hidden_size)
|
| 55 |
+
attention_params = int(2 * (1 + ffn_expansion_factor) * num_layers * hidden_size * hidden_size)
|
| 56 |
+
mlp_params = ffn_expansion_factor * num_layers * hidden_size * hidden_size
|
| 57 |
+
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
|
| 58 |
+
|
| 59 |
+
bytes_per_param = 2 if is_mixed_precision else 4
|
| 60 |
+
model_mem = total_params * bytes_per_param
|
| 61 |
+
per_gpu_mem_gib = (model_mem / (tensor_parallel_size * pipeline_parallel_size)) / 1024**3 + misc_mem_gib
|
| 62 |
+
|
| 63 |
+
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
| 64 |
+
|
| 65 |
# ---- Parameter Calculation ---- #
|
| 66 |
def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
|
| 67 |
if tied_embeddings:
|
|
|
|
| 94 |
Total Params in the Model: {convert_params(total_params)}
|
| 95 |
"""
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
# ---- Gradio Interface ---- #
|
| 98 |
with gr.Blocks() as demo:
|
| 99 |
with gr.Tabs():
|
| 100 |
+
# Memory Calculation Tab
|
| 101 |
+
with gr.TabItem("Memory Calculation"):
|
| 102 |
hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path (optional)", value="")
|
| 103 |
+
num_gpus = gr.Number(label="Number of GPUs", value=1)
|
| 104 |
+
tensor_parallel_size = gr.Number(label="Tensor Parallel Size", value=1)
|
| 105 |
+
pipeline_parallel_size = gr.Number(label="Pipeline Parallel Size", value=1)
|
| 106 |
+
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=8)
|
| 107 |
+
sequence_length = gr.Number(label="Sequence Length", value=2048)
|
| 108 |
+
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
| 109 |
+
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
| 110 |
+
num_attention_heads = gr.Number(label="Number of Attention Heads", value=64)
|
| 111 |
+
num_layers = gr.Number(label="Number of Layers", value=44)
|
| 112 |
+
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
|
| 113 |
+
is_mixed_precision = gr.Checkbox(label="Mixed Precision", value=True)
|
| 114 |
+
misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5)
|
| 115 |
+
|
| 116 |
+
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
|
| 117 |
+
calc_memory_button = gr.Button("Calculate Memory")
|
| 118 |
+
calc_memory_button.click(calc_mem,
|
| 119 |
+
inputs=[hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib],
|
| 120 |
+
outputs=memory_result)
|
| 121 |
+
|
| 122 |
+
# Parameter Calculation Tab
|
| 123 |
+
with gr.TabItem("Parameter Calculation"):
|
| 124 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
| 125 |
tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
|
| 126 |
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
| 127 |
sequence_length = gr.Number(label="Sequence Length", value=2048)
|
| 128 |
num_layers = gr.Number(label="Number of Layers", value=44)
|
|
|
|
| 129 |
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
|
| 130 |
num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2)
|
| 131 |
kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0)
|
|
|
|
| 136 |
expert_interval = gr.Number(label="Expert Interval", value=1)
|
| 137 |
topk = gr.Number(label="Top k Routing", value=1)
|
| 138 |
|
| 139 |
+
param_result = gr.Textbox(label="Parameter Calculation Result", interactive=False)
|
| 140 |
+
calc_param_button = gr.Button("Calculate Parameters")
|
| 141 |
+
calc_param_button.click(calc_params,
|
| 142 |
+
inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio],
|
| 143 |
+
outputs=param_result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
demo.launch()
|