Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import math
|
|
|
|
| 3 |
|
| 4 |
-
# Helper
|
| 5 |
def convert_params(params):
|
| 6 |
if params == 0:
|
| 7 |
return "0"
|
|
@@ -11,57 +12,78 @@ def convert_params(params):
|
|
| 11 |
s = round(params / p, 2)
|
| 12 |
return "%s %s" % (s, size_name[i])
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
def
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
#
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
dp_degree = args.num_gpus / (args.tensor_parallel_size * args.pipeline_parallel_size)
|
| 50 |
embed_params = 2 * args.vocab_size * args.hidden_size
|
| 51 |
positional_params = args.hidden_size * args.sequence_length
|
| 52 |
ln_params = 8 * args.hidden_size * args.num_layers + (2 * args.hidden_size)
|
| 53 |
-
attention_params = int(2 * (1 + args.
|
| 54 |
-
mlp_params = args.
|
| 55 |
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
|
| 56 |
|
| 57 |
-
bytes_per_param =
|
| 58 |
model_mem = total_params * bytes_per_param
|
| 59 |
-
|
| 60 |
-
per_gpu_mem_gib = per_gpu_model_mem / 1024**3 + args.misc_mem_gib
|
| 61 |
|
| 62 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
| 63 |
|
| 64 |
-
# Gradio Interface
|
| 65 |
with gr.Blocks() as demo:
|
| 66 |
with gr.Tabs():
|
| 67 |
with gr.TabItem("Parameter Calculation"):
|
|
@@ -101,6 +123,6 @@ with gr.Blocks() as demo:
|
|
| 101 |
|
| 102 |
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
|
| 103 |
calc_memory_button = gr.Button("Calculate Memory")
|
| 104 |
-
calc_memory_button.click(calc_mem, inputs=[num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib], outputs=memory_result)
|
| 105 |
|
| 106 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import math
|
| 3 |
+
from transformers import AutoConfig # Required for Hugging Face integration
|
| 4 |
|
| 5 |
+
# ---- Helper Functions ---- #
|
| 6 |
def convert_params(params):
|
| 7 |
if params == 0:
|
| 8 |
return "0"
|
|
|
|
| 12 |
s = round(params / p, 2)
|
| 13 |
return "%s %s" % (s, size_name[i])
|
| 14 |
|
| 15 |
+
# Set defaults for missing arguments
|
| 16 |
+
def set_defaults(args, defaults):
|
| 17 |
+
for key, value in defaults.items():
|
| 18 |
+
if getattr(args, key) is None:
|
| 19 |
+
setattr(args, key, value)
|
| 20 |
+
return args
|
| 21 |
+
|
| 22 |
+
# Set value if it's None, else use the config value
|
| 23 |
+
def set_if_none(args, key, config, config_key, defaults):
|
| 24 |
+
if getattr(args, key) is None:
|
| 25 |
+
setattr(args, key, config.get(config_key, defaults[key]))
|
| 26 |
+
return args
|
| 27 |
+
|
| 28 |
+
# Get Hugging Face model arguments
|
| 29 |
+
def get_hf_model_args(args, defaults):
|
| 30 |
+
if args.hf_model_name_or_path:
|
| 31 |
+
try:
|
| 32 |
+
config = AutoConfig.from_pretrained(args.hf_model_name_or_path, trust_remote_code=True).to_dict()
|
| 33 |
+
except Exception as e:
|
| 34 |
+
raise gr.Error(f"Error fetching Hugging Face model: {str(e)}")
|
| 35 |
+
|
| 36 |
+
# Update arguments with Hugging Face model config values
|
| 37 |
+
args.num_layers = config.get("num_hidden_layers", defaults["num_layers"])
|
| 38 |
+
args.hidden_size = config.get("hidden_size", defaults["hidden_size"])
|
| 39 |
+
args.num_attention_heads = config.get("num_attention_heads", defaults["num_attention_heads"])
|
| 40 |
+
args.vocab_size = config.get("vocab_size", defaults["vocab_size"])
|
| 41 |
+
args.sequence_length = config.get("max_position_embeddings", defaults["sequence_length"])
|
| 42 |
+
|
| 43 |
+
return set_defaults(args, defaults)
|
| 44 |
+
|
| 45 |
+
# ---- Memory Calculation ---- #
|
| 46 |
+
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
| 47 |
+
|
| 48 |
+
# Define defaults
|
| 49 |
+
defaults = {
|
| 50 |
+
"num_layers": 44,
|
| 51 |
+
"hidden_size": 6144,
|
| 52 |
+
"num_attention_heads": 64,
|
| 53 |
+
"vocab_size": 51200,
|
| 54 |
+
"sequence_length": 2048,
|
| 55 |
+
"ffn_expansion_factor": 4,
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
# Create a simple args object to simulate parsed arguments
|
| 59 |
+
class Args:
|
| 60 |
+
def __init__(self, **kwargs):
|
| 61 |
+
for key, value in kwargs.items():
|
| 62 |
+
setattr(self, key, value)
|
| 63 |
+
|
| 64 |
+
args = Args(hf_model_name_or_path=hf_model_name_or_path, num_gpus=num_gpus, tensor_parallel_size=tensor_parallel_size,
|
| 65 |
+
pipeline_parallel_size=pipeline_parallel_size, batch_size_per_gpu=batch_size_per_gpu, sequence_length=sequence_length,
|
| 66 |
+
vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=num_attention_heads, num_layers=num_layers,
|
| 67 |
+
ffn_expansion_factor=ffn_expansion_factor, is_mixed_precision=is_mixed_precision, misc_mem_gib=misc_mem_gib)
|
| 68 |
+
|
| 69 |
+
# Fetch Hugging Face model args if a model is provided
|
| 70 |
+
args = get_hf_model_args(args, defaults)
|
| 71 |
+
|
| 72 |
dp_degree = args.num_gpus / (args.tensor_parallel_size * args.pipeline_parallel_size)
|
| 73 |
embed_params = 2 * args.vocab_size * args.hidden_size
|
| 74 |
positional_params = args.hidden_size * args.sequence_length
|
| 75 |
ln_params = 8 * args.hidden_size * args.num_layers + (2 * args.hidden_size)
|
| 76 |
+
attention_params = int(2 * (1 + args.ffn_expansion_factor) * args.num_layers * args.hidden_size * args.hidden_size)
|
| 77 |
+
mlp_params = args.ffn_expansion_factor * args.num_layers * args.hidden_size * args.hidden_size
|
| 78 |
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
|
| 79 |
|
| 80 |
+
bytes_per_param = 2 if args.is_mixed_precision else 4
|
| 81 |
model_mem = total_params * bytes_per_param
|
| 82 |
+
per_gpu_mem_gib = (model_mem / (args.tensor_parallel_size * args.pipeline_parallel_size)) / 1024**3 + args.misc_mem_gib
|
|
|
|
| 83 |
|
| 84 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
| 85 |
|
| 86 |
+
# ---- Gradio Interface ---- #
|
| 87 |
with gr.Blocks() as demo:
|
| 88 |
with gr.Tabs():
|
| 89 |
with gr.TabItem("Parameter Calculation"):
|
|
|
|
| 123 |
|
| 124 |
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
|
| 125 |
calc_memory_button = gr.Button("Calculate Memory")
|
| 126 |
+
calc_memory_button.click(calc_mem, inputs=[hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib], outputs=memory_result)
|
| 127 |
|
| 128 |
demo.launch()
|