import spaces import gradio as gr import torch from transformers import Qwen3VLForConditionalGeneration, AutoProcessor from PIL import Image import numpy as np from typing import List, Dict, Any, Optional, Tuple import io import base64 # Initialize the model and processor model_id = "Qwen/Qwen3-VL-8B-Instruct" # Load model with optimizations for inference model = Qwen3VLForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto" ) processor = AutoProcessor.from_pretrained(model_id) @spaces.GPU(duration=60) def process_chat_message( message: str, image: Optional[Image.Image], history: List[Dict[str, Any]] ) -> str: """ Process a chat message with optional image input using Qwen3-VL model. Args: message: The user's text message image: Optional PIL Image history: Chat history Returns: The model's response """ # Prepare the message content content = [] # Add image if provided if image is not None: # Convert PIL image to format expected by the model content.append({"type": "image", "image": image}) # Add text message if message: content.append({"type": "text", "text": message}) # Create the messages format for the model messages = [] # Add history if exists (text only for simplicity) for hist_item in history: if hist_item["role"] == "user": messages.append({ "role": "user", "content": hist_item.get("content", "") }) elif hist_item["role"] == "assistant": messages.append({ "role": "assistant", "content": hist_item.get("content", "") }) # Add current message if content: messages.append({ "role": "user", "content": content }) # Prepare inputs for the model inputs = processor.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt" ) # Move inputs to the same device as the model inputs = {k: v.to(model.device) if torch.is_tensor(v) else v for k, v in inputs.items()} # Generate response with torch.no_grad(): generated_ids = model.generate( **inputs, max_new_tokens=512, temperature=0.7, do_sample=True, top_p=0.95 ) # Decode the generated response generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs['input_ids'], generated_ids) ] response = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] return response def chat_fn(message: Dict[str, Any], history: List[Dict[str, Any]]) -> Tuple[str, List[Dict[str, Any]]]: """ Main chat function that processes user input and returns response. Args: message: Dictionary containing text and optional files history: Chat history in messages format Returns: Empty string and updated history """ text = message.get("text", "") files = message.get("files", []) # Process image if provided image = None if files and len(files) > 0: try: image = Image.open(files[0]) # Convert RGBA to RGB if necessary if image.mode == "RGBA": background = Image.new("RGB", image.size, (255, 255, 255)) background.paste(image, mask=image.split()[3]) image = background except Exception as e: print(f"Error loading image: {e}") image = None # Convert history to format expected by model model_history = [] for msg in history: if msg.get("role") == "user": model_history.append({"role": "user", "content": msg.get("content", "")}) elif msg.get("role") == "assistant": model_history.append({"role": "assistant", "content": msg.get("content", "")}) # Get response from model try: response = process_chat_message(text, image, model_history) except Exception as e: response = f"Sorry, I encountered an error: {str(e)}" # Update history with proper message format if image is not None: # Include image indicator in the content user_content = f"{text}\n[Image uploaded]" if text else "[Image uploaded]" else: user_content = text history.append({"role": "user", "content": user_content}) history.append({"role": "assistant", "content": response}) return "", history def retry_fn(history: List[Dict[str, Any]]) -> Tuple[str, List[Dict[str, Any]]]: """Retry the last message.""" if not history or len(history) < 2: return "", history # Remove last assistant response history = history[:-1] # Get the last user message last_user_msg = history[-1] if history else None if not last_user_msg: return "", history # Remove the last user message too (we'll re-add it with new response) history = history[:-1] # Recreate the message dict user_content = last_user_msg.get("content", "") # Extract text without image indicator if "[Image uploaded]" in user_content: text = user_content.replace("\n[Image uploaded]", "").replace("[Image uploaded]", "") else: text = user_content message = {"text": text} return chat_fn(message, history) def undo_fn(history: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Undo the last message pair (user + assistant).""" if history and len(history) >= 2: # Remove last user and assistant messages return history[:-2] return [] def clear_fn() -> Tuple[str, List]: """Clear the chat.""" return "", [] # Create the Gradio interface with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo: gr.Markdown( """ # 🌟 Qwen3-VL Multimodal Chat Chat with Qwen3-VL - A powerful vision-language model that can understand and discuss images! **Features:** - 📝 Text conversations - đŸ–ŧī¸ Image understanding and analysis - 🎨 Visual question answering - 🔍 Detailed image descriptions [Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder) """ ) with gr.Row(): with gr.Column(scale=1): gr.Markdown( """ ### 💡 Tips: - Upload an image and ask questions about it - Try asking for detailed descriptions - Ask about objects, colors, text in images - Compare elements within the image """ ) gr.Markdown( """ ### 📸 Example Prompts: - "What's in this image?" - "Describe this scene in detail" - "What text can you see?" - "Count the objects in the image" - "What's the mood of this image?" """ ) with gr.Column(scale=3): chatbot = gr.Chatbot( label="Chat", type="messages", height=500, show_copy_button=True, bubble_full_width=False, avatar_images=[None, "🤖"], value=[] ) with gr.Row(): msg = gr.MultimodalTextbox( label="Message", placeholder="Type a message or upload an image...", file_types=["image"], submit_btn=True, stop_btn=False ) with gr.Row(): retry_btn = gr.Button("🔄 Retry", variant="secondary", size="sm") undo_btn = gr.Button("â†Šī¸ Undo", variant="secondary", size="sm") clear_btn = gr.Button("đŸ—‘ī¸ Clear", variant="secondary", size="sm") with gr.Accordion("âš™ī¸ Advanced Settings", open=False): gr.Markdown( """ **Model Information:** - Model: Qwen3-VL-4B-Instruct - Optimized for vision-language tasks - Supports multiple languages - Best performance with clear, well-lit images """ ) # Set up event handlers msg.submit( chat_fn, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True ) retry_btn.click( retry_fn, inputs=[chatbot], outputs=[msg, chatbot], queue=True ) undo_btn.click( undo_fn, inputs=[chatbot], outputs=[chatbot], queue=False ) clear_btn.click( clear_fn, outputs=[msg, chatbot], queue=False ) # Add examples gr.Examples( examples=[ {"text": "Hello! What can you help me with today?"}, {"text": "Can you describe an image if I upload one?"}, {"text": "What are your capabilities?"}, ], inputs=msg, label="Example Messages" ) if __name__ == "__main__": demo.launch( show_error=True, share=False, debug=True )