Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
import numpy as np
|
| 4 |
-
import torch
|
| 5 |
-
import torch.nn.functional as F
|
| 6 |
import onnxruntime
|
| 7 |
import cv2
|
| 8 |
-
from PIL import Image
|
| 9 |
|
| 10 |
# Declare ONNX session as a global variable
|
| 11 |
-
MODEL_PATH = "
|
| 12 |
session = onnxruntime.InferenceSession(MODEL_PATH)
|
| 13 |
|
| 14 |
def pil_to_cv2(pil_image):
|
|
@@ -28,8 +24,9 @@ def process_image(pil_img):
|
|
| 28 |
|
| 29 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 30 |
img = np.transpose(img, (2, 0, 1))
|
| 31 |
-
img =
|
| 32 |
-
img.
|
|
|
|
| 33 |
return img
|
| 34 |
|
| 35 |
def calculate_similarity(img1, img2):
|
|
@@ -40,19 +37,19 @@ def calculate_similarity(img1, img2):
|
|
| 40 |
# Extract features using ONNX model
|
| 41 |
def get_features(img_tensor):
|
| 42 |
input_name = session.get_inputs()[0].name
|
| 43 |
-
features = session.run(None, {input_name: img_tensor
|
| 44 |
-
return
|
| 45 |
|
| 46 |
# Extract features for each image
|
| 47 |
feat1 = get_features(img1_tensor)
|
| 48 |
feat2 = get_features(img2_tensor)
|
| 49 |
|
| 50 |
-
# Normalize features
|
| 51 |
-
feat1 =
|
| 52 |
-
feat2 =
|
| 53 |
|
| 54 |
# Calculate cosine similarity
|
| 55 |
-
cosine_similarity =
|
| 56 |
return f"Cosine Similarity: {cosine_similarity:.4f}"
|
| 57 |
|
| 58 |
# Create Gradio interface with custom layout
|
|
@@ -75,4 +72,4 @@ with gr.Blocks() as iface:
|
|
| 75 |
)
|
| 76 |
|
| 77 |
# Launch the interface
|
| 78 |
-
iface.launch(
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
| 3 |
import onnxruntime
|
| 4 |
import cv2
|
|
|
|
| 5 |
|
| 6 |
# Declare ONNX session as a global variable
|
| 7 |
+
MODEL_PATH = "Glint360K_R200_TopoFR_9784.onnx"
|
| 8 |
session = onnxruntime.InferenceSession(MODEL_PATH)
|
| 9 |
|
| 10 |
def pil_to_cv2(pil_image):
|
|
|
|
| 24 |
|
| 25 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 26 |
img = np.transpose(img, (2, 0, 1))
|
| 27 |
+
img = img.astype(np.float32)
|
| 28 |
+
img = np.expand_dims(img, axis=0)
|
| 29 |
+
img = (img / 255.0 - 0.5) / 0.5
|
| 30 |
return img
|
| 31 |
|
| 32 |
def calculate_similarity(img1, img2):
|
|
|
|
| 37 |
# Extract features using ONNX model
|
| 38 |
def get_features(img_tensor):
|
| 39 |
input_name = session.get_inputs()[0].name
|
| 40 |
+
features = session.run(None, {input_name: img_tensor})[0]
|
| 41 |
+
return features
|
| 42 |
|
| 43 |
# Extract features for each image
|
| 44 |
feat1 = get_features(img1_tensor)
|
| 45 |
feat2 = get_features(img2_tensor)
|
| 46 |
|
| 47 |
+
# Normalize features (L2 normalization)
|
| 48 |
+
feat1 = feat1 / np.linalg.norm(feat1, axis=1, keepdims=True)
|
| 49 |
+
feat2 = feat2 / np.linalg.norm(feat2, axis=1, keepdims=True)
|
| 50 |
|
| 51 |
# Calculate cosine similarity
|
| 52 |
+
cosine_similarity = np.sum(feat1 * feat2, axis=1).item()
|
| 53 |
return f"Cosine Similarity: {cosine_similarity:.4f}"
|
| 54 |
|
| 55 |
# Create Gradio interface with custom layout
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
# Launch the interface
|
| 75 |
+
iface.launch()
|