Spaces:
Running
on
Zero
Running
on
Zero
sanchit-gandhi
commited on
Commit
·
7bd1e74
1
Parent(s):
4487a27
short-form
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 2 |
from transformers.utils import is_flash_attn_2_available
|
| 3 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
import time
|
|
@@ -25,6 +26,7 @@ if not use_flash_attention_2:
|
|
| 25 |
distilled_model = distilled_model.to_bettertransformer()
|
| 26 |
|
| 27 |
processor = AutoProcessor.from_pretrained("openai/whisper-large-v2")
|
|
|
|
| 28 |
|
| 29 |
model.to(device)
|
| 30 |
distilled_model.to(device)
|
|
@@ -72,32 +74,65 @@ def transcribe(inputs):
|
|
| 72 |
f"Got an audio of length {round(audio_length_mins, 3)} minutes."
|
| 73 |
)
|
| 74 |
|
| 75 |
-
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
start_time = time.time()
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
distil_runtime = time.time() - start_time
|
| 82 |
distil_runtime = round(distil_runtime, 2)
|
| 83 |
-
|
| 84 |
|
| 85 |
-
|
| 86 |
-
distil_text = distil_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]
|
| 87 |
-
yield distil_text, distil_runtime, None, None, None
|
| 88 |
|
| 89 |
-
|
| 90 |
-
global runtime
|
| 91 |
start_time = time.time()
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
runtime = time.time() - start_time
|
| 94 |
runtime = round(runtime, 2)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
pipe._forward = _forward_time
|
| 98 |
-
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
|
| 99 |
|
| 100 |
-
yield distil_text, distil_runtime, text, runtime
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
with gr.Blocks() as demo:
|
|
|
|
| 1 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, TextIteratorStreamer
|
| 2 |
from transformers.utils import is_flash_attn_2_available
|
| 3 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 4 |
+
from threading import Thread
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
import time
|
|
|
|
| 26 |
distilled_model = distilled_model.to_bettertransformer()
|
| 27 |
|
| 28 |
processor = AutoProcessor.from_pretrained("openai/whisper-large-v2")
|
| 29 |
+
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=True)
|
| 30 |
|
| 31 |
model.to(device)
|
| 32 |
distilled_model.to(device)
|
|
|
|
| 74 |
f"Got an audio of length {round(audio_length_mins, 3)} minutes."
|
| 75 |
)
|
| 76 |
|
| 77 |
+
if audio_length_mins >= 0.5:
|
| 78 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
| 79 |
|
| 80 |
+
def _forward_distil_time(*args, **kwargs):
|
| 81 |
+
global distil_runtime
|
| 82 |
+
start_time = time.time()
|
| 83 |
+
result = distil_pipe_forward(*args, **kwargs)
|
| 84 |
+
distil_runtime = time.time() - start_time
|
| 85 |
+
distil_runtime = round(distil_runtime, 2)
|
| 86 |
+
return result
|
| 87 |
+
|
| 88 |
+
distil_pipe._forward = _forward_distil_time
|
| 89 |
+
distil_text = distil_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]
|
| 90 |
+
yield distil_text, distil_runtime, None, None
|
| 91 |
+
|
| 92 |
+
def _forward_time(*args, **kwargs):
|
| 93 |
+
global runtime
|
| 94 |
+
start_time = time.time()
|
| 95 |
+
result = pipe_forward(*args, **kwargs)
|
| 96 |
+
runtime = time.time() - start_time
|
| 97 |
+
runtime = round(runtime, 2)
|
| 98 |
+
return result
|
| 99 |
+
|
| 100 |
+
pipe._forward = _forward_time
|
| 101 |
+
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
|
| 102 |
+
|
| 103 |
+
yield distil_text, distil_runtime, text, runtime
|
| 104 |
+
|
| 105 |
+
else:
|
| 106 |
+
input_features = processor(inputs, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt").input_features
|
| 107 |
+
|
| 108 |
+
# Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
|
| 109 |
+
generation_kwargs = dict(input_features, streamer=streamer, max_new_tokens=128, language="en", task="transcribe")
|
| 110 |
+
thread = Thread(target=distilled_model.generate, kwargs=generation_kwargs)
|
| 111 |
+
|
| 112 |
+
thread.start()
|
| 113 |
start_time = time.time()
|
| 114 |
+
distil_text = ""
|
| 115 |
+
for generated_text in streamer:
|
| 116 |
+
distil_text += generated_text
|
| 117 |
+
yield distil_text, None, None, None
|
| 118 |
+
|
| 119 |
distil_runtime = time.time() - start_time
|
| 120 |
distil_runtime = round(distil_runtime, 2)
|
| 121 |
+
yield distil_text, distil_runtime, None, None
|
| 122 |
|
| 123 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
thread.start()
|
|
|
|
| 126 |
start_time = time.time()
|
| 127 |
+
text = ""
|
| 128 |
+
for generated_text in streamer:
|
| 129 |
+
text += generated_text
|
| 130 |
+
yield distil_text, distil_runtime, text, None
|
| 131 |
+
|
| 132 |
runtime = time.time() - start_time
|
| 133 |
runtime = round(runtime, 2)
|
| 134 |
+
yield distil_text, distil_runtime, text, runtime
|
|
|
|
|
|
|
|
|
|
| 135 |
|
|
|
|
| 136 |
|
| 137 |
if __name__ == "__main__":
|
| 138 |
with gr.Blocks() as demo:
|