Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,8 +8,47 @@ from pathlib import Path
|
|
| 8 |
from PIL import Image
|
| 9 |
import os
|
| 10 |
import time
|
|
|
|
|
|
|
| 11 |
import spaces
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
print(f"Using device: {DEVICE}")
|
| 15 |
|
|
@@ -18,12 +57,10 @@ DEFAULT_WIDTH = 1024
|
|
| 18 |
DEFAULT_GUIDANCE_SCALE = 3.5
|
| 19 |
DEFAULT_NUM_INFERENCE_STEPS = 15
|
| 20 |
DEFAULT_MAX_SEQUENCE_LENGTH = 512
|
| 21 |
-
GENERATION_SEED = 0 # could use a random number generator to set this, for more variety
|
| 22 |
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")
|
| 23 |
|
| 24 |
CACHED_PIPES = {}
|
| 25 |
def load_bf16_pipeline():
|
| 26 |
-
"""Loads the original FLUX.1-dev pipeline in BF16 precision."""
|
| 27 |
print("Loading BF16 pipeline...")
|
| 28 |
MODEL_ID = "black-forest-labs/FLUX.1-dev"
|
| 29 |
if MODEL_ID in CACHED_PIPES:
|
|
@@ -36,7 +73,6 @@ def load_bf16_pipeline():
|
|
| 36 |
token=HF_TOKEN
|
| 37 |
)
|
| 38 |
pipe.to(DEVICE)
|
| 39 |
-
# pipe.enable_model_cpu_offload()
|
| 40 |
end_time = time.time()
|
| 41 |
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 42 |
print(f"BF16 Pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
|
|
@@ -44,10 +80,9 @@ def load_bf16_pipeline():
|
|
| 44 |
return pipe
|
| 45 |
except Exception as e:
|
| 46 |
print(f"Error loading BF16 pipeline: {e}")
|
| 47 |
-
raise
|
| 48 |
|
| 49 |
def load_bnb_8bit_pipeline():
|
| 50 |
-
"""Loads the FLUX.1-dev pipeline with 8-bit quantized components."""
|
| 51 |
print("Loading 8-bit BNB pipeline...")
|
| 52 |
MODEL_ID = "derekl35/FLUX.1-dev-bnb-8bit"
|
| 53 |
if MODEL_ID in CACHED_PIPES:
|
|
@@ -70,7 +105,6 @@ def load_bnb_8bit_pipeline():
|
|
| 70 |
raise
|
| 71 |
|
| 72 |
def load_bnb_4bit_pipeline():
|
| 73 |
-
"""Loads the FLUX.1-dev pipeline with 4-bit quantized components."""
|
| 74 |
print("Loading 4-bit BNB pipeline...")
|
| 75 |
MODEL_ID = "derekl35/FLUX.1-dev-nf4"
|
| 76 |
if MODEL_ID in CACHED_PIPES:
|
|
@@ -89,20 +123,17 @@ def load_bnb_4bit_pipeline():
|
|
| 89 |
CACHED_PIPES[MODEL_ID] = pipe
|
| 90 |
return pipe
|
| 91 |
except Exception as e:
|
| 92 |
-
print(f"4-bit BNB pipeline: {e}")
|
| 93 |
raise
|
| 94 |
|
| 95 |
@spaces.GPU(duration=240)
|
| 96 |
def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)):
|
| 97 |
-
"""Loads original and selected quantized model, generates one image each, shuffles results."""
|
| 98 |
if not prompt:
|
| 99 |
-
return None, {}, gr.update(value="Please enter a prompt.", interactive=False), gr.update(choices=[], value=None)
|
| 100 |
|
| 101 |
if not quantization_choice:
|
| 102 |
-
|
| 103 |
-
return None, {}, gr.update(value="Please select a quantization method.", interactive=False), gr.update(choices=[], value=None)
|
| 104 |
|
| 105 |
-
# Determine which quantized model to load
|
| 106 |
if quantization_choice == "8-bit":
|
| 107 |
quantized_load_func = load_bnb_8bit_pipeline
|
| 108 |
quantized_label = "Quantized (8-bit)"
|
|
@@ -110,12 +141,11 @@ def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm
|
|
| 110 |
quantized_load_func = load_bnb_4bit_pipeline
|
| 111 |
quantized_label = "Quantized (4-bit)"
|
| 112 |
else:
|
| 113 |
-
|
| 114 |
-
return None, {}, gr.update(value="Invalid quantization choice.", interactive=False), gr.update(choices=[], value=None)
|
| 115 |
|
| 116 |
model_configs = [
|
| 117 |
("Original", load_bf16_pipeline),
|
| 118 |
-
(quantized_label, quantized_load_func),
|
| 119 |
]
|
| 120 |
|
| 121 |
results = []
|
|
@@ -128,8 +158,6 @@ def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm
|
|
| 128 |
"max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH,
|
| 129 |
}
|
| 130 |
|
| 131 |
-
current_pipe = None # Keep track of the current pipe for cleanup
|
| 132 |
-
|
| 133 |
seed = random.getrandbits(64)
|
| 134 |
print(f"Using seed: {seed}")
|
| 135 |
|
|
@@ -147,7 +175,6 @@ def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm
|
|
| 147 |
gen_start_time = time.time()
|
| 148 |
image_list = current_pipe(**pipe_kwargs, generator=torch.manual_seed(seed)).images
|
| 149 |
image = image_list[0]
|
| 150 |
-
# image.save(f"{load_start_time}.png")
|
| 151 |
gen_end_time = time.time()
|
| 152 |
results.append({"label": label, "image": image})
|
| 153 |
print(f"--- Finished Generation with {label} Model in {gen_end_time - gen_start_time:.2f} seconds ---")
|
|
@@ -156,64 +183,42 @@ def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm
|
|
| 156 |
|
| 157 |
except Exception as e:
|
| 158 |
print(f"Error during {label} model processing: {e}")
|
| 159 |
-
|
| 160 |
-
return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False), gr.update(choices=[], value=None)
|
| 161 |
|
| 162 |
-
# No finally block needed here, cleanup happens before next load or after loop
|
| 163 |
|
| 164 |
if len(results) != len(model_configs):
|
| 165 |
-
|
| 166 |
-
# Update all outputs
|
| 167 |
-
return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False), gr.update(choices=[], value=None)
|
| 168 |
|
| 169 |
-
# Shuffle the results for display
|
| 170 |
shuffled_results = results.copy()
|
| 171 |
random.shuffle(shuffled_results)
|
| 172 |
-
|
| 173 |
-
# Create the gallery data: [(image, caption), (image, caption)]
|
| 174 |
shuffled_data_for_gallery = [(res["image"], f"Image {i+1}") for i, res in enumerate(shuffled_results)]
|
| 175 |
-
|
| 176 |
-
# Create the mapping: display_index -> correct_label (e.g., {0: 'Original', 1: 'Quantized (8-bit)'})
|
| 177 |
correct_mapping = {i: res["label"] for i, res in enumerate(shuffled_results)}
|
| 178 |
print("Correct mapping (hidden):", correct_mapping)
|
| 179 |
|
| 180 |
-
|
| 181 |
|
| 182 |
-
# Return shuffled images, the correct mapping state, status message, and update the guess radio
|
| 183 |
-
return shuffled_data_for_gallery, correct_mapping, gr.update(value="Generation complete! Make your guess.", interactive=False), guess_radio_update
|
| 184 |
|
| 185 |
-
|
| 186 |
-
# --- Guess Verification Function ---
|
| 187 |
def check_guess(user_guess, correct_mapping_state):
|
| 188 |
-
"""Compares the user's guess with the correct mapping stored in the state."""
|
| 189 |
-
|
| 190 |
if not isinstance(correct_mapping_state, dict) or not correct_mapping_state:
|
| 191 |
return "Please generate images first (state is empty or invalid)."
|
| 192 |
-
|
| 193 |
if user_guess is None:
|
| 194 |
return "Please select which image you think is quantized."
|
| 195 |
|
| 196 |
-
# Find which display index (0 or 1) corresponds to the quantized image
|
| 197 |
quantized_image_index = -1
|
| 198 |
quantized_label_actual = ""
|
| 199 |
for index, label in correct_mapping_state.items():
|
| 200 |
-
if "Quantized" in label:
|
| 201 |
quantized_image_index = index
|
| 202 |
-
quantized_label_actual = label
|
| 203 |
break
|
| 204 |
-
|
| 205 |
if quantized_image_index == -1:
|
| 206 |
-
# This shouldn't happen if generation was successful
|
| 207 |
return "Error: Could not find the quantized image in the mapping data."
|
| 208 |
|
| 209 |
-
|
| 210 |
-
correct_guess_label = f"Image {quantized_image_index + 1}" # "Image 1" or "Image 2"
|
| 211 |
-
|
| 212 |
if user_guess == correct_guess_label:
|
| 213 |
feedback = f"Correct! {correct_guess_label} used the {quantized_label_actual} model."
|
| 214 |
else:
|
| 215 |
feedback = f"Incorrect. The quantized image ({quantized_label_actual}) was {correct_guess_label}."
|
| 216 |
-
|
| 217 |
return feedback
|
| 218 |
|
| 219 |
EXAMPLE_DIR = Path(__file__).parent / "examples"
|
|
@@ -221,12 +226,14 @@ EXAMPLES = [
|
|
| 221 |
{
|
| 222 |
"prompt": "A photorealistic portrait of an astronaut on Mars",
|
| 223 |
"files": ["astronauts_seed_6456306350371904162.png", "astronauts_bnb_8bit.png"],
|
| 224 |
-
"quantized_idx": 1,
|
|
|
|
| 225 |
},
|
| 226 |
{
|
| 227 |
"prompt": "Water-color painting of a cat wearing sunglasses",
|
| 228 |
"files": ["watercolor_cat_bnb_8bit.png", "watercolor_cat_seed_14269059182221286790.png"],
|
| 229 |
"quantized_idx": 0,
|
|
|
|
| 230 |
},
|
| 231 |
# {
|
| 232 |
# "prompt": "Neo-tokyo cyberpunk cityscape at night, rain-soaked streets, 8-K",
|
|
@@ -236,97 +243,304 @@ EXAMPLES = [
|
|
| 236 |
]
|
| 237 |
|
| 238 |
def load_example(idx):
|
| 239 |
-
"""Return [(PIL.Image, caption)...], mapping dict, and feedback string"""
|
| 240 |
ex = EXAMPLES[idx]
|
| 241 |
imgs = [Image.open(EXAMPLE_DIR / f) for f in ex["files"]]
|
| 242 |
gallery_items = [(img, f"Image {i+1}") for i, img in enumerate(imgs)]
|
| 243 |
-
mapping = {i: ("Quantized" if i == ex["quantized_idx"] else "Original")
|
| 244 |
for i in range(2)}
|
| 245 |
return gallery_items, mapping, f"{ex['prompt']}"
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo:
|
| 248 |
gr.Markdown("# FLUX Model Quantization Challenge")
|
| 249 |
-
gr.
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
if __name__ == "__main__":
|
| 332 |
demo.launch(share=True)
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
import os
|
| 10 |
import time
|
| 11 |
+
import json
|
| 12 |
+
from fasteners import InterProcessLock
|
| 13 |
import spaces
|
| 14 |
|
| 15 |
+
AGG_FILE = Path(__file__).parent / "agg_stats.json"
|
| 16 |
+
LOCK_FILE = AGG_FILE.with_suffix(".lock")
|
| 17 |
+
|
| 18 |
+
def _load_agg_stats() -> dict:
|
| 19 |
+
if AGG_FILE.exists():
|
| 20 |
+
with open(AGG_FILE, "r") as f:
|
| 21 |
+
try:
|
| 22 |
+
return json.load(f)
|
| 23 |
+
except json.JSONDecodeError:
|
| 24 |
+
print(f"Warning: {AGG_FILE} is corrupted. Starting with empty stats.")
|
| 25 |
+
return {"8-bit": {"attempts": 0, "correct": 0}, "4-bit": {"attempts": 0, "correct": 0}}
|
| 26 |
+
return {"8-bit": {"attempts": 0, "correct": 0},
|
| 27 |
+
"4-bit": {"attempts": 0, "correct": 0}}
|
| 28 |
+
|
| 29 |
+
def _save_agg_stats(stats: dict) -> None:
|
| 30 |
+
with InterProcessLock(str(LOCK_FILE)):
|
| 31 |
+
with open(AGG_FILE, "w") as f:
|
| 32 |
+
json.dump(stats, f, indent=2)
|
| 33 |
+
|
| 34 |
+
USER_STATS_FILE = Path(__file__).parent / "user_stats.json"
|
| 35 |
+
USER_STATS_LOCK_FILE = USER_STATS_FILE.with_suffix(".lock")
|
| 36 |
+
|
| 37 |
+
def _load_user_stats() -> dict:
|
| 38 |
+
if USER_STATS_FILE.exists():
|
| 39 |
+
with open(USER_STATS_FILE, "r") as f:
|
| 40 |
+
try:
|
| 41 |
+
return json.load(f)
|
| 42 |
+
except json.JSONDecodeError:
|
| 43 |
+
print(f"Warning: {USER_STATS_FILE} is corrupted. Starting with empty user stats.")
|
| 44 |
+
return {}
|
| 45 |
+
return {}
|
| 46 |
+
|
| 47 |
+
def _save_user_stats(stats: dict) -> None:
|
| 48 |
+
with InterProcessLock(str(USER_STATS_LOCK_FILE)):
|
| 49 |
+
with open(USER_STATS_FILE, "w") as f:
|
| 50 |
+
json.dump(stats, f, indent=2)
|
| 51 |
+
|
| 52 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 53 |
print(f"Using device: {DEVICE}")
|
| 54 |
|
|
|
|
| 57 |
DEFAULT_GUIDANCE_SCALE = 3.5
|
| 58 |
DEFAULT_NUM_INFERENCE_STEPS = 15
|
| 59 |
DEFAULT_MAX_SEQUENCE_LENGTH = 512
|
|
|
|
| 60 |
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")
|
| 61 |
|
| 62 |
CACHED_PIPES = {}
|
| 63 |
def load_bf16_pipeline():
|
|
|
|
| 64 |
print("Loading BF16 pipeline...")
|
| 65 |
MODEL_ID = "black-forest-labs/FLUX.1-dev"
|
| 66 |
if MODEL_ID in CACHED_PIPES:
|
|
|
|
| 73 |
token=HF_TOKEN
|
| 74 |
)
|
| 75 |
pipe.to(DEVICE)
|
|
|
|
| 76 |
end_time = time.time()
|
| 77 |
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 78 |
print(f"BF16 Pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
|
|
|
|
| 80 |
return pipe
|
| 81 |
except Exception as e:
|
| 82 |
print(f"Error loading BF16 pipeline: {e}")
|
| 83 |
+
raise
|
| 84 |
|
| 85 |
def load_bnb_8bit_pipeline():
|
|
|
|
| 86 |
print("Loading 8-bit BNB pipeline...")
|
| 87 |
MODEL_ID = "derekl35/FLUX.1-dev-bnb-8bit"
|
| 88 |
if MODEL_ID in CACHED_PIPES:
|
|
|
|
| 105 |
raise
|
| 106 |
|
| 107 |
def load_bnb_4bit_pipeline():
|
|
|
|
| 108 |
print("Loading 4-bit BNB pipeline...")
|
| 109 |
MODEL_ID = "derekl35/FLUX.1-dev-nf4"
|
| 110 |
if MODEL_ID in CACHED_PIPES:
|
|
|
|
| 123 |
CACHED_PIPES[MODEL_ID] = pipe
|
| 124 |
return pipe
|
| 125 |
except Exception as e:
|
| 126 |
+
print(f"Error loading 4-bit BNB pipeline: {e}")
|
| 127 |
raise
|
| 128 |
|
| 129 |
@spaces.GPU(duration=240)
|
| 130 |
def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 131 |
if not prompt:
|
| 132 |
+
return None, {}, gr.update(value="Please enter a prompt.", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)
|
| 133 |
|
| 134 |
if not quantization_choice:
|
| 135 |
+
return None, {}, gr.update(value="Please select a quantization method.", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)
|
|
|
|
| 136 |
|
|
|
|
| 137 |
if quantization_choice == "8-bit":
|
| 138 |
quantized_load_func = load_bnb_8bit_pipeline
|
| 139 |
quantized_label = "Quantized (8-bit)"
|
|
|
|
| 141 |
quantized_load_func = load_bnb_4bit_pipeline
|
| 142 |
quantized_label = "Quantized (4-bit)"
|
| 143 |
else:
|
| 144 |
+
return None, {}, gr.update(value="Invalid quantization choice.", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)
|
|
|
|
| 145 |
|
| 146 |
model_configs = [
|
| 147 |
("Original", load_bf16_pipeline),
|
| 148 |
+
(quantized_label, quantized_load_func),
|
| 149 |
]
|
| 150 |
|
| 151 |
results = []
|
|
|
|
| 158 |
"max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH,
|
| 159 |
}
|
| 160 |
|
|
|
|
|
|
|
| 161 |
seed = random.getrandbits(64)
|
| 162 |
print(f"Using seed: {seed}")
|
| 163 |
|
|
|
|
| 175 |
gen_start_time = time.time()
|
| 176 |
image_list = current_pipe(**pipe_kwargs, generator=torch.manual_seed(seed)).images
|
| 177 |
image = image_list[0]
|
|
|
|
| 178 |
gen_end_time = time.time()
|
| 179 |
results.append({"label": label, "image": image})
|
| 180 |
print(f"--- Finished Generation with {label} Model in {gen_end_time - gen_start_time:.2f} seconds ---")
|
|
|
|
| 183 |
|
| 184 |
except Exception as e:
|
| 185 |
print(f"Error during {label} model processing: {e}")
|
| 186 |
+
return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)
|
|
|
|
| 187 |
|
|
|
|
| 188 |
|
| 189 |
if len(results) != len(model_configs):
|
| 190 |
+
return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)
|
|
|
|
|
|
|
| 191 |
|
|
|
|
| 192 |
shuffled_results = results.copy()
|
| 193 |
random.shuffle(shuffled_results)
|
|
|
|
|
|
|
| 194 |
shuffled_data_for_gallery = [(res["image"], f"Image {i+1}") for i, res in enumerate(shuffled_results)]
|
|
|
|
|
|
|
| 195 |
correct_mapping = {i: res["label"] for i, res in enumerate(shuffled_results)}
|
| 196 |
print("Correct mapping (hidden):", correct_mapping)
|
| 197 |
|
| 198 |
+
return shuffled_data_for_gallery, correct_mapping, "Generation complete! Make your guess.", None, gr.update(interactive=True), gr.update(interactive=True)
|
| 199 |
|
|
|
|
|
|
|
| 200 |
|
|
|
|
|
|
|
| 201 |
def check_guess(user_guess, correct_mapping_state):
|
|
|
|
|
|
|
| 202 |
if not isinstance(correct_mapping_state, dict) or not correct_mapping_state:
|
| 203 |
return "Please generate images first (state is empty or invalid)."
|
|
|
|
| 204 |
if user_guess is None:
|
| 205 |
return "Please select which image you think is quantized."
|
| 206 |
|
|
|
|
| 207 |
quantized_image_index = -1
|
| 208 |
quantized_label_actual = ""
|
| 209 |
for index, label in correct_mapping_state.items():
|
| 210 |
+
if "Quantized" in label:
|
| 211 |
quantized_image_index = index
|
| 212 |
+
quantized_label_actual = label
|
| 213 |
break
|
|
|
|
| 214 |
if quantized_image_index == -1:
|
|
|
|
| 215 |
return "Error: Could not find the quantized image in the mapping data."
|
| 216 |
|
| 217 |
+
correct_guess_label = f"Image {quantized_image_index + 1}"
|
|
|
|
|
|
|
| 218 |
if user_guess == correct_guess_label:
|
| 219 |
feedback = f"Correct! {correct_guess_label} used the {quantized_label_actual} model."
|
| 220 |
else:
|
| 221 |
feedback = f"Incorrect. The quantized image ({quantized_label_actual}) was {correct_guess_label}."
|
|
|
|
| 222 |
return feedback
|
| 223 |
|
| 224 |
EXAMPLE_DIR = Path(__file__).parent / "examples"
|
|
|
|
| 226 |
{
|
| 227 |
"prompt": "A photorealistic portrait of an astronaut on Mars",
|
| 228 |
"files": ["astronauts_seed_6456306350371904162.png", "astronauts_bnb_8bit.png"],
|
| 229 |
+
"quantized_idx": 1,
|
| 230 |
+
"quant_method": "bnb 8-bit",
|
| 231 |
},
|
| 232 |
{
|
| 233 |
"prompt": "Water-color painting of a cat wearing sunglasses",
|
| 234 |
"files": ["watercolor_cat_bnb_8bit.png", "watercolor_cat_seed_14269059182221286790.png"],
|
| 235 |
"quantized_idx": 0,
|
| 236 |
+
"quant_method": "bnb 8-bit",
|
| 237 |
},
|
| 238 |
# {
|
| 239 |
# "prompt": "Neo-tokyo cyberpunk cityscape at night, rain-soaked streets, 8-K",
|
|
|
|
| 243 |
]
|
| 244 |
|
| 245 |
def load_example(idx):
|
|
|
|
| 246 |
ex = EXAMPLES[idx]
|
| 247 |
imgs = [Image.open(EXAMPLE_DIR / f) for f in ex["files"]]
|
| 248 |
gallery_items = [(img, f"Image {i+1}") for i, img in enumerate(imgs)]
|
| 249 |
+
mapping = {i: (f"Quantized {ex['quant_method']}" if i == ex["quantized_idx"] else "Original")
|
| 250 |
for i in range(2)}
|
| 251 |
return gallery_items, mapping, f"{ex['prompt']}"
|
| 252 |
|
| 253 |
+
def _accuracy_string(correct: int, attempts: int) -> tuple[str, float]:
|
| 254 |
+
if attempts:
|
| 255 |
+
pct = 100 * correct / attempts
|
| 256 |
+
return f"{pct:.1f}%", pct
|
| 257 |
+
return "N/A", -1.0
|
| 258 |
+
|
| 259 |
+
def _add_medals(user_rows):
|
| 260 |
+
MEDALS = {0: "🥇 ", 1: "🥈 ", 2: "🥉 "}
|
| 261 |
+
return [
|
| 262 |
+
[MEDALS.get(i, "") + row[0], *row[1:]]
|
| 263 |
+
for i, row in enumerate(user_rows)
|
| 264 |
+
]
|
| 265 |
+
|
| 266 |
+
def update_leaderboards_data():
|
| 267 |
+
agg = _load_agg_stats()
|
| 268 |
+
quant_rows = []
|
| 269 |
+
for method, stats in agg.items():
|
| 270 |
+
acc_str, acc_val = _accuracy_string(stats["correct"], stats["attempts"])
|
| 271 |
+
quant_rows.append([
|
| 272 |
+
method,
|
| 273 |
+
stats["correct"],
|
| 274 |
+
stats["attempts"],
|
| 275 |
+
acc_str
|
| 276 |
+
])
|
| 277 |
+
quant_rows.sort(key=lambda r: r[1]/r[2] if r[2] != 0 else 1e9)
|
| 278 |
+
|
| 279 |
+
user_stats = _load_user_stats()
|
| 280 |
+
user_rows = []
|
| 281 |
+
for user, st in user_stats.items():
|
| 282 |
+
acc_str, acc_val = _accuracy_string(st["total_correct"], st["total_attempts"])
|
| 283 |
+
user_rows.append([user, st["total_correct"], st["total_attempts"], acc_str])
|
| 284 |
+
user_rows.sort(key=lambda r: (-float(r[3].rstrip('%')) if r[3] != "N/A" else float('-inf'), -r[2]))
|
| 285 |
+
user_rows = _add_medals(user_rows)
|
| 286 |
+
|
| 287 |
+
return quant_rows, user_rows
|
| 288 |
+
|
| 289 |
with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo:
|
| 290 |
gr.Markdown("# FLUX Model Quantization Challenge")
|
| 291 |
+
with gr.Tabs():
|
| 292 |
+
with gr.TabItem("Challenge"):
|
| 293 |
+
gr.Markdown(
|
| 294 |
+
"Compare the original FLUX.1-dev (BF16) model against a quantized version (4-bit or 8-bit). "
|
| 295 |
+
"Enter a prompt, choose the quantization method, and generate two images. "
|
| 296 |
+
"The images will be shuffled, can you spot which one was quantized?"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
gr.Markdown("### Examples")
|
| 300 |
+
ex_selector = gr.Radio(
|
| 301 |
+
choices=[f"Example {i+1}" for i in range(len(EXAMPLES))],
|
| 302 |
+
label="Choose an example prompt",
|
| 303 |
+
interactive=True,
|
| 304 |
+
)
|
| 305 |
+
gr.Markdown("### …or create your own comparison")
|
| 306 |
+
with gr.Row():
|
| 307 |
+
prompt_input = gr.Textbox(label="Enter Prompt", scale=3)
|
| 308 |
+
quantization_choice_radio = gr.Radio(
|
| 309 |
+
choices=["8-bit", "4-bit"],
|
| 310 |
+
label="Select Quantization",
|
| 311 |
+
value="8-bit",
|
| 312 |
+
scale=1
|
| 313 |
+
)
|
| 314 |
+
generate_button = gr.Button("Generate & Compare", variant="primary", scale=1)
|
| 315 |
+
|
| 316 |
+
output_gallery = gr.Gallery(
|
| 317 |
+
label="Generated Images",
|
| 318 |
+
columns=2,
|
| 319 |
+
height=606,
|
| 320 |
+
object_fit="contain",
|
| 321 |
+
allow_preview=True,
|
| 322 |
+
show_label=True,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
gr.Markdown("### Which image used the selected quantization method?")
|
| 326 |
+
with gr.Row():
|
| 327 |
+
image1_btn = gr.Button("Image 1")
|
| 328 |
+
image2_btn = gr.Button("Image 2")
|
| 329 |
+
|
| 330 |
+
feedback_box = gr.Textbox(label="Feedback", interactive=False, lines=1)
|
| 331 |
+
|
| 332 |
+
with gr.Row():
|
| 333 |
+
session_score_box = gr.Textbox(label="Your accuracy this session", interactive=False)
|
| 334 |
+
|
| 335 |
+
with gr.Row(equal_height=False):
|
| 336 |
+
username_input = gr.Textbox(
|
| 337 |
+
label="Enter Your Name for Leaderboard",
|
| 338 |
+
placeholder="YourName",
|
| 339 |
+
visible=False,
|
| 340 |
+
interactive=True,
|
| 341 |
+
scale=2
|
| 342 |
+
)
|
| 343 |
+
add_score_button = gr.Button(
|
| 344 |
+
"Add My Score to Leaderboard",
|
| 345 |
+
visible=False,
|
| 346 |
+
variant="secondary",
|
| 347 |
+
scale=1
|
| 348 |
+
)
|
| 349 |
+
add_score_feedback = gr.Textbox(
|
| 350 |
+
label="Leaderboard Update",
|
| 351 |
+
visible=False,
|
| 352 |
+
interactive=False,
|
| 353 |
+
lines=1
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
correct_mapping_state = gr.State({})
|
| 357 |
+
session_stats_state = gr.State(
|
| 358 |
+
{"8-bit": {"attempts": 0, "correct": 0},
|
| 359 |
+
"4-bit": {"attempts": 0, "correct": 0}}
|
| 360 |
+
)
|
| 361 |
+
is_example_state = gr.State(False)
|
| 362 |
+
has_added_score_state = gr.State(False)
|
| 363 |
+
|
| 364 |
+
def _load_example(sel):
|
| 365 |
+
idx = int(sel.split()[-1]) - 1
|
| 366 |
+
gallery_items, mapping, prompt = load_example(idx)
|
| 367 |
+
quant_data, user_data = update_leaderboards_data()
|
| 368 |
+
return gallery_items, mapping, prompt, True, quant_data, user_data
|
| 369 |
+
|
| 370 |
+
ex_selector.change(
|
| 371 |
+
fn=_load_example,
|
| 372 |
+
inputs=ex_selector,
|
| 373 |
+
outputs=[output_gallery, correct_mapping_state, prompt_input, is_example_state, quant_df, user_df],
|
| 374 |
+
).then(
|
| 375 |
+
lambda: (gr.update(interactive=True), gr.update(interactive=True)),
|
| 376 |
+
outputs=[image1_btn, image2_btn],
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
generate_button.click(
|
| 380 |
+
fn=generate_images,
|
| 381 |
+
inputs=[prompt_input, quantization_choice_radio],
|
| 382 |
+
outputs=[output_gallery, correct_mapping_state]
|
| 383 |
+
).then(
|
| 384 |
+
lambda: (False, # for is_example_state
|
| 385 |
+
False, # for has_added_score_state
|
| 386 |
+
gr.update(visible=False, value="", interactive=True), # username_input reset
|
| 387 |
+
gr.update(visible=False), # add_score_button reset
|
| 388 |
+
gr.update(visible=False, value="")), # add_score_feedback reset
|
| 389 |
+
outputs=[is_example_state,
|
| 390 |
+
has_added_score_state,
|
| 391 |
+
username_input,
|
| 392 |
+
add_score_button,
|
| 393 |
+
add_score_feedback]
|
| 394 |
+
).then(
|
| 395 |
+
lambda: (gr.update(interactive=True),
|
| 396 |
+
gr.update(interactive=True),
|
| 397 |
+
""),
|
| 398 |
+
outputs=[image1_btn, image2_btn, feedback_box],
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
def choose(choice_string, mapping, session_stats, is_example, has_added_score_curr):
|
| 402 |
+
feedback = check_guess(choice_string, mapping)
|
| 403 |
+
|
| 404 |
+
quant_label = next(label for label in mapping.values() if "Quantized" in label)
|
| 405 |
+
quant_key = "8-bit" if "8-bit" in quant_label else "4-bit"
|
| 406 |
+
|
| 407 |
+
got_it_right = "Correct!" in feedback
|
| 408 |
+
|
| 409 |
+
sess = session_stats.copy()
|
| 410 |
+
if not is_example and not has_added_score_curr:
|
| 411 |
+
sess[quant_key]["attempts"] += 1
|
| 412 |
+
if got_it_right:
|
| 413 |
+
sess[quant_key]["correct"] += 1
|
| 414 |
+
session_stats = sess
|
| 415 |
+
|
| 416 |
+
AGG_STATS = _load_agg_stats()
|
| 417 |
+
AGG_STATS[quant_key]["attempts"] += 1
|
| 418 |
+
if got_it_right:
|
| 419 |
+
AGG_STATS[quant_key]["correct"] += 1
|
| 420 |
+
_save_agg_stats(AGG_STATS)
|
| 421 |
+
|
| 422 |
+
def _fmt(d):
|
| 423 |
+
a, c = d["attempts"], d["correct"]
|
| 424 |
+
pct = 100 * c / a if a else 0
|
| 425 |
+
return f"{c} / {a} ({pct:.1f}%)"
|
| 426 |
+
|
| 427 |
+
session_msg = ", ".join(
|
| 428 |
+
f"{k}: {_fmt(v)}" for k, v in sess.items()
|
| 429 |
+
)
|
| 430 |
+
current_agg_stats = _load_agg_stats()
|
| 431 |
+
global_msg = ", ".join(
|
| 432 |
+
f"{k}: {_fmt(v)}" for k, v in current_agg_stats.items()
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
username_input_update = gr.update(visible=False, interactive=True)
|
| 436 |
+
add_score_button_update = gr.update(visible=False)
|
| 437 |
+
# Keep existing feedback if score was already added and feedback is visible
|
| 438 |
+
current_feedback_text = add_score_feedback.value if hasattr(add_score_feedback, 'value') and add_score_feedback.value else ""
|
| 439 |
+
add_score_feedback_update = gr.update(visible=has_added_score_curr, value=current_feedback_text)
|
| 440 |
+
|
| 441 |
+
session_total_attempts = sum(stats["attempts"] for stats in sess.values())
|
| 442 |
+
|
| 443 |
+
if not is_example and not has_added_score_curr:
|
| 444 |
+
if session_total_attempts >= 1 : # Show button if more than 1 attempt
|
| 445 |
+
username_input_update = gr.update(visible=True, interactive=True)
|
| 446 |
+
add_score_button_update = gr.update(visible=True, interactive=True)
|
| 447 |
+
add_score_feedback_update = gr.update(visible=False, value="")
|
| 448 |
+
else: # Less than 1 attempts, keep hidden
|
| 449 |
+
username_input_update = gr.update(visible=False, value=username_input.value if hasattr(username_input, 'value') else "")
|
| 450 |
+
add_score_button_update = gr.update(visible=False)
|
| 451 |
+
add_score_feedback_update = gr.update(visible=False, value="")
|
| 452 |
+
elif has_added_score_curr:
|
| 453 |
+
username_input_update = gr.update(visible=True, interactive=False, value=username_input.value if hasattr(username_input, 'value') else "")
|
| 454 |
+
add_score_button_update = gr.update(visible=True, interactive=False)
|
| 455 |
+
add_score_feedback_update = gr.update(visible=True)
|
| 456 |
+
|
| 457 |
+
# disable the buttons so the user can't vote twice
|
| 458 |
+
quant_data, user_data = update_leaderboards_data() # Get updated leaderboard data
|
| 459 |
+
return (feedback,
|
| 460 |
+
gr.update(interactive=False),
|
| 461 |
+
gr.update(interactive=False),
|
| 462 |
+
session_msg,
|
| 463 |
+
session_stats,
|
| 464 |
+
quant_data,
|
| 465 |
+
user_data,
|
| 466 |
+
username_input_update,
|
| 467 |
+
add_score_button_update,
|
| 468 |
+
add_score_feedback_update)
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
image1_btn.click(
|
| 472 |
+
fn=lambda mapping, sess, is_ex, has_added: choose("Image 1", mapping, sess, is_ex, has_added),
|
| 473 |
+
inputs=[correct_mapping_state, session_stats_state, is_example_state, has_added_score_state],
|
| 474 |
+
outputs=[feedback_box, image1_btn, image2_btn,
|
| 475 |
+
session_score_box, session_stats_state,
|
| 476 |
+
quant_df, user_df,
|
| 477 |
+
username_input, add_score_button, add_score_feedback],
|
| 478 |
+
)
|
| 479 |
+
image2_btn.click(
|
| 480 |
+
fn=lambda mapping, sess, is_ex, has_added: choose("Image 2", mapping, sess, is_ex, has_added),
|
| 481 |
+
inputs=[correct_mapping_state, session_stats_state, is_example_state, has_added_score_state],
|
| 482 |
+
outputs=[feedback_box, image1_btn, image2_btn,
|
| 483 |
+
session_score_box, session_stats_state,
|
| 484 |
+
quant_df, user_df,
|
| 485 |
+
username_input, add_score_button, add_score_feedback],
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
def handle_add_score_to_leaderboard(username_str, current_session_stats_dict):
|
| 489 |
+
if not username_str or not username_str.strip():
|
| 490 |
+
return ("Username is required.", # Feedback for add_score_feedback
|
| 491 |
+
gr.update(interactive=True), # username_input
|
| 492 |
+
gr.update(interactive=True), # add_score_button
|
| 493 |
+
False, # has_added_score_state
|
| 494 |
+
None, None) # quant_df, user_df
|
| 495 |
+
|
| 496 |
+
user_stats = _load_user_stats()
|
| 497 |
+
user_key = username_str.strip()
|
| 498 |
+
|
| 499 |
+
session_total_correct = sum(stats["correct"] for stats in current_session_stats_dict.values())
|
| 500 |
+
session_total_attempts = sum(stats["attempts"] for stats in current_session_stats_dict.values())
|
| 501 |
+
|
| 502 |
+
if session_total_attempts == 0:
|
| 503 |
+
return ("No attempts made in this session to add to leaderboard.",
|
| 504 |
+
gr.update(interactive=True),
|
| 505 |
+
gr.update(interactive=True),
|
| 506 |
+
False, None, None)
|
| 507 |
+
|
| 508 |
+
if user_key in user_stats:
|
| 509 |
+
user_stats[user_key]["total_correct"] += session_total_correct
|
| 510 |
+
user_stats[user_key]["total_attempts"] += session_total_attempts
|
| 511 |
+
else:
|
| 512 |
+
user_stats[user_key] = {
|
| 513 |
+
"total_correct": session_total_correct,
|
| 514 |
+
"total_attempts": session_total_attempts
|
| 515 |
+
}
|
| 516 |
+
_save_user_stats(user_stats)
|
| 517 |
+
|
| 518 |
+
new_quant_data, new_user_data = update_leaderboards_data()
|
| 519 |
+
feedback_msg = f"Score for '{user_key}' submitted to leaderboard!"
|
| 520 |
+
return (feedback_msg, # To add_score_feedback
|
| 521 |
+
gr.update(interactive=False), # username_input
|
| 522 |
+
gr.update(interactive=False), # add_score_button
|
| 523 |
+
True, # has_added_score_state (set to true)
|
| 524 |
+
new_quant_data, # To quant_df
|
| 525 |
+
new_user_data) # To user_df
|
| 526 |
+
|
| 527 |
+
add_score_button.click(
|
| 528 |
+
fn=handle_add_score_to_leaderboard,
|
| 529 |
+
inputs=[username_input, session_stats_state],
|
| 530 |
+
outputs=[add_score_feedback, username_input, add_score_button, has_added_score_state, quant_df, user_df]
|
| 531 |
+
)
|
| 532 |
+
with gr.TabItem("Leaderboard"):
|
| 533 |
+
gr.Markdown("## Quantization Method Leaderboard *(Lower % ⇒ harder to detect)*")
|
| 534 |
+
quant_df = gr.DataFrame(
|
| 535 |
+
headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
|
| 536 |
+
interactive=False, col_count=(4, "fixed")
|
| 537 |
+
)
|
| 538 |
+
gr.Markdown("## User Leaderboard *(Higher % ⇒ better spotter)*")
|
| 539 |
+
user_df = gr.DataFrame(
|
| 540 |
+
headers=["User", "Correct Guesses", "Total Attempts", "Accuracy %"],
|
| 541 |
+
interactive=False, col_count=(4, "fixed")
|
| 542 |
+
)
|
| 543 |
+
demo.load(update_leaderboards_data, outputs=[quant_df, user_df])
|
| 544 |
|
| 545 |
if __name__ == "__main__":
|
| 546 |
demo.launch(share=True)
|