Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
|
@@ -35,24 +35,6 @@ def _save_agg_stats(stats: dict) -> None:
|
|
| 35 |
with open(AGG_FILE, "w") as f:
|
| 36 |
json.dump(stats, f, indent=2)
|
| 37 |
|
| 38 |
-
USER_STATS_FILE = Path(__file__).parent / "user_stats.json"
|
| 39 |
-
USER_STATS_LOCK_FILE = USER_STATS_FILE.with_suffix(".lock")
|
| 40 |
-
|
| 41 |
-
def _load_user_stats() -> dict:
|
| 42 |
-
if USER_STATS_FILE.exists():
|
| 43 |
-
with open(USER_STATS_FILE, "r") as f:
|
| 44 |
-
try:
|
| 45 |
-
return json.load(f)
|
| 46 |
-
except json.JSONDecodeError:
|
| 47 |
-
print(f"Warning: {USER_STATS_FILE} is corrupted. Starting with empty user stats.")
|
| 48 |
-
return {}
|
| 49 |
-
return {}
|
| 50 |
-
|
| 51 |
-
def _save_user_stats(stats: dict) -> None:
|
| 52 |
-
with InterProcessLock(str(USER_STATS_LOCK_FILE)):
|
| 53 |
-
with open(USER_STATS_FILE, "w") as f:
|
| 54 |
-
json.dump(stats, f, indent=2)
|
| 55 |
-
|
| 56 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 57 |
print(f"Using device: {DEVICE}")
|
| 58 |
|
|
@@ -62,7 +44,7 @@ DEFAULT_GUIDANCE_SCALE = 3.5
|
|
| 62 |
DEFAULT_NUM_INFERENCE_STEPS = 15
|
| 63 |
DEFAULT_MAX_SEQUENCE_LENGTH = 512
|
| 64 |
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")
|
| 65 |
-
HF_DATASET_REPO_ID = "
|
| 66 |
|
| 67 |
CACHED_PIPES = {}
|
| 68 |
def load_bf16_pipeline():
|
|
@@ -99,7 +81,6 @@ def load_bnb_8bit_pipeline():
|
|
| 99 |
torch_dtype=torch.bfloat16
|
| 100 |
)
|
| 101 |
pipe.to(DEVICE)
|
| 102 |
-
# pipe.enable_model_cpu_offload()
|
| 103 |
end_time = time.time()
|
| 104 |
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 105 |
print(f"8-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
|
|
@@ -121,7 +102,6 @@ def load_bnb_4bit_pipeline():
|
|
| 121 |
torch_dtype=torch.bfloat16
|
| 122 |
)
|
| 123 |
pipe.to(DEVICE)
|
| 124 |
-
# pipe.enable_model_cpu_offload()
|
| 125 |
end_time = time.time()
|
| 126 |
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 127 |
print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
|
|
@@ -134,10 +114,10 @@ def load_bnb_4bit_pipeline():
|
|
| 134 |
@spaces.GPU(duration=240)
|
| 135 |
def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)):
|
| 136 |
if not prompt:
|
| 137 |
-
return None, {}, gr.update(value="Please enter a prompt.", interactive=False),
|
| 138 |
|
| 139 |
if not quantization_choice:
|
| 140 |
-
return None, {}, gr.update(value="Please select a quantization method.", interactive=False),
|
| 141 |
|
| 142 |
if quantization_choice == "8-bit bnb":
|
| 143 |
quantized_load_func = load_bnb_8bit_pipeline
|
|
@@ -146,7 +126,7 @@ def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm
|
|
| 146 |
quantized_load_func = load_bnb_4bit_pipeline
|
| 147 |
quantized_label = "Quantized (4-bit bnb)"
|
| 148 |
else:
|
| 149 |
-
return None, {}, gr.update(value="Invalid quantization choice.", interactive=False),
|
| 150 |
|
| 151 |
model_configs = [
|
| 152 |
("Original", load_bf16_pipeline),
|
|
@@ -188,11 +168,11 @@ def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm
|
|
| 188 |
|
| 189 |
except Exception as e:
|
| 190 |
print(f"Error during {label} model processing: {e}")
|
| 191 |
-
return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False),
|
| 192 |
|
| 193 |
|
| 194 |
if len(results) != len(model_configs):
|
| 195 |
-
return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False),
|
| 196 |
|
| 197 |
shuffled_results = results.copy()
|
| 198 |
random.shuffle(shuffled_results)
|
|
@@ -263,13 +243,6 @@ def _accuracy_string(correct: int, attempts: int) -> tuple[str, float]:
|
|
| 263 |
return f"{pct:.1f}%", pct
|
| 264 |
return "N/A", -1.0
|
| 265 |
|
| 266 |
-
def _add_medals(user_rows):
|
| 267 |
-
MEDALS = {0: "🥇 ", 1: "🥈 ", 2: "🥉 "}
|
| 268 |
-
return [
|
| 269 |
-
[MEDALS.get(i, "") + row[0], *row[1:]]
|
| 270 |
-
for i, row in enumerate(user_rows)
|
| 271 |
-
]
|
| 272 |
-
|
| 273 |
def update_leaderboards_data():
|
| 274 |
agg = _load_agg_stats()
|
| 275 |
quant_rows = []
|
|
@@ -282,50 +255,12 @@ def update_leaderboards_data():
|
|
| 282 |
acc_str
|
| 283 |
])
|
| 284 |
quant_rows.sort(key=lambda r: r[1]/r[2] if r[2] != 0 else 1e9)
|
| 285 |
-
|
| 286 |
-
user_stats_all = _load_user_stats()
|
| 287 |
-
|
| 288 |
-
overall_user_rows = []
|
| 289 |
-
for user, per_method_stats_dict in user_stats_all.items():
|
| 290 |
-
user_total_correct = 0
|
| 291 |
-
user_total_attempts = 0
|
| 292 |
-
for method_stats in per_method_stats_dict.values():
|
| 293 |
-
user_total_correct += method_stats.get("correct", 0)
|
| 294 |
-
user_total_attempts += method_stats.get("attempts", 0)
|
| 295 |
-
|
| 296 |
-
if user_total_attempts >= 1:
|
| 297 |
-
acc_str, _ = _accuracy_string(user_total_correct, user_total_attempts)
|
| 298 |
-
overall_user_rows.append([user, user_total_correct, user_total_attempts, acc_str])
|
| 299 |
-
|
| 300 |
-
overall_user_rows.sort(key=lambda r: (-float(r[3].rstrip('%')) if r[3] != "N/A" else float('-inf'), -r[2]))
|
| 301 |
-
overall_user_rows_medaled = _add_medals(overall_user_rows)
|
| 302 |
-
|
| 303 |
-
user_leaderboards_per_method = {}
|
| 304 |
-
quant_method_names = list(agg.keys())
|
| 305 |
-
|
| 306 |
-
for method_name in quant_method_names:
|
| 307 |
-
method_specific_user_rows = []
|
| 308 |
-
for user, per_user_method_stats_dict in user_stats_all.items():
|
| 309 |
-
if method_name in per_user_method_stats_dict:
|
| 310 |
-
st = per_user_method_stats_dict[method_name]
|
| 311 |
-
if st.get("attempts", 0) >= 1: # Only include users who have attempted this method
|
| 312 |
-
acc_str, _ = _accuracy_string(st["correct"], st["attempts"])
|
| 313 |
-
method_specific_user_rows.append([user, st["correct"], st["attempts"], acc_str])
|
| 314 |
-
|
| 315 |
-
method_specific_user_rows.sort(key=lambda r: (-float(r[3].rstrip('%')) if r[3] != "N/A" else float('-inf'), -r[2]))
|
| 316 |
-
method_specific_user_rows_medaled = _add_medals(method_specific_user_rows)
|
| 317 |
-
user_leaderboards_per_method[method_name] = method_specific_user_rows_medaled
|
| 318 |
-
|
| 319 |
-
return quant_rows, overall_user_rows_medaled, user_leaderboards_per_method
|
| 320 |
|
| 321 |
quant_df = gr.DataFrame(
|
| 322 |
headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
|
| 323 |
interactive=False, col_count=(4, "fixed")
|
| 324 |
)
|
| 325 |
-
user_df = gr.DataFrame(
|
| 326 |
-
headers=["User", "Correct Guesses", "Total Attempts", "Accuracy %"],
|
| 327 |
-
interactive=False, col_count=(4, "fixed")
|
| 328 |
-
)
|
| 329 |
|
| 330 |
with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo:
|
| 331 |
gr.Markdown("# FLUX Model Quantization Challenge")
|
|
@@ -372,26 +307,16 @@ with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as d
|
|
| 372 |
|
| 373 |
with gr.Row():
|
| 374 |
session_score_box = gr.Textbox(label="Your accuracy this session", interactive=False)
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
)
|
| 384 |
-
|
| 385 |
-
"Add My Score to Leaderboard",
|
| 386 |
-
visible=False,
|
| 387 |
-
variant="secondary",
|
| 388 |
-
scale=1
|
| 389 |
-
)
|
| 390 |
-
add_score_feedback = gr.Textbox(
|
| 391 |
-
label="Leaderboard Update",
|
| 392 |
-
visible=False,
|
| 393 |
-
interactive=False,
|
| 394 |
-
lines=1
|
| 395 |
)
|
| 396 |
|
| 397 |
correct_mapping_state = gr.State({})
|
|
@@ -400,29 +325,26 @@ with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as d
|
|
| 400 |
"4-bit bnb": {"attempts": 0, "correct": 0}}
|
| 401 |
)
|
| 402 |
is_example_state = gr.State(False)
|
| 403 |
-
has_added_score_state = gr.State(False)
|
| 404 |
prompt_state = gr.State("")
|
| 405 |
seed_state = gr.State(None)
|
| 406 |
results_state = gr.State([])
|
| 407 |
|
| 408 |
def _load_example_and_update_dfs(sel_summary):
|
| 409 |
-
# Find the index of the selected example by its summary
|
| 410 |
idx = next((i for i, ex in enumerate(EXAMPLES) if ex["summary"] == sel_summary), -1)
|
| 411 |
if idx == -1:
|
| 412 |
-
# Fallback or error handling if summary not found
|
| 413 |
print(f"Error: Example with summary '{sel_summary}' not found.")
|
| 414 |
-
return (gr.update(), gr.update(), gr.update(), False, gr.update(),
|
| 415 |
|
| 416 |
ex = EXAMPLES[idx]
|
| 417 |
gallery_items, mapping, prompt = load_example(idx)
|
| 418 |
-
quant_data
|
| 419 |
-
return gallery_items, mapping, prompt, True, quant_data,
|
| 420 |
|
| 421 |
ex_selector.change(
|
| 422 |
fn=_load_example_and_update_dfs,
|
| 423 |
inputs=ex_selector,
|
| 424 |
-
outputs=[output_gallery, correct_mapping_state, prompt_input, is_example_state, quant_df,
|
| 425 |
-
|
| 426 |
).then(
|
| 427 |
lambda: (gr.update(interactive=True), gr.update(interactive=True)),
|
| 428 |
outputs=[image1_btn, image2_btn],
|
|
@@ -432,50 +354,39 @@ with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as d
|
|
| 432 |
fn=generate_images,
|
| 433 |
inputs=[prompt_input, quantization_choice_radio],
|
| 434 |
outputs=[output_gallery, correct_mapping_state, prompt_state, seed_state, results_state,
|
| 435 |
-
|
| 436 |
).then(
|
| 437 |
-
lambda:
|
| 438 |
-
|
| 439 |
-
gr.update(visible=False, value="", interactive=True), # username_input reset
|
| 440 |
-
gr.update(visible=False), # add_score_button reset
|
| 441 |
-
gr.update(visible=False, value="")), # add_score_feedback reset
|
| 442 |
-
outputs=[is_example_state,
|
| 443 |
-
has_added_score_state,
|
| 444 |
-
username_input,
|
| 445 |
-
add_score_button,
|
| 446 |
-
add_score_feedback]
|
| 447 |
).then(
|
| 448 |
lambda: (gr.update(interactive=True),
|
| 449 |
-
|
| 450 |
-
|
| 451 |
outputs=[image1_btn, image2_btn, feedback_box],
|
| 452 |
)
|
| 453 |
|
| 454 |
-
def choose(choice_string, mapping, session_stats, is_example,
|
| 455 |
-
|
| 456 |
feedback = check_guess(choice_string, mapping)
|
| 457 |
|
| 458 |
if not mapping:
|
| 459 |
-
return feedback, gr.update(), gr.update(), "", session_stats,
|
| 460 |
|
| 461 |
quant_label_from_mapping = next((label for label in mapping.values() if "Quantized" in label), None)
|
| 462 |
if not quant_label_from_mapping:
|
| 463 |
print("Error: Could not determine quantization label from mapping:", mapping)
|
| 464 |
return ("Internal Error: Could not process results.", gr.update(interactive=False), gr.update(interactive=False),
|
| 465 |
-
"", session_stats,
|
| 466 |
|
| 467 |
quant_key = "8-bit bnb" if "8-bit bnb" in quant_label_from_mapping else "4-bit bnb"
|
| 468 |
-
|
| 469 |
got_it_right = "Correct!" in feedback
|
| 470 |
-
|
| 471 |
sess = session_stats.copy()
|
| 472 |
-
should_log_and_update_stats = not is_example and not has_added_score_curr
|
| 473 |
|
| 474 |
-
if
|
| 475 |
sess[quant_key]["attempts"] += 1
|
| 476 |
if got_it_right:
|
| 477 |
sess[quant_key]["correct"] += 1
|
| 478 |
-
session_stats = sess
|
| 479 |
|
| 480 |
AGG_STATS = _load_agg_stats()
|
| 481 |
AGG_STATS[quant_key]["attempts"] += 1
|
|
@@ -487,6 +398,8 @@ with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as d
|
|
| 487 |
print("Warning: HF_TOKEN not set. Skipping dataset logging.")
|
| 488 |
elif not results:
|
| 489 |
print("Warning: Results state is empty. Skipping dataset logging.")
|
|
|
|
|
|
|
| 490 |
else:
|
| 491 |
print(f"Logging guess to HF Dataset: {HF_DATASET_REPO_ID}")
|
| 492 |
original_image = None
|
|
@@ -525,32 +438,22 @@ with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as d
|
|
| 525 |
"quantized_image_displayed_position": [f"Image {quantized_image_pos + 1}"],
|
| 526 |
"user_guess_displayed_position": [choice_string],
|
| 527 |
"correct_guess": [got_it_right],
|
| 528 |
-
"username": [
|
| 529 |
}
|
| 530 |
-
|
| 531 |
try:
|
| 532 |
-
# Attempt to load existing dataset
|
| 533 |
existing_ds = load_dataset(
|
| 534 |
HF_DATASET_REPO_ID,
|
| 535 |
split="train",
|
| 536 |
token=HF_TOKEN,
|
| 537 |
features=expected_features,
|
| 538 |
-
# verification_mode="no_checks" # Consider removing or using default
|
| 539 |
-
# download_mode="force_redownload" # For debugging cache issues
|
| 540 |
)
|
| 541 |
-
# Create a new dataset from the new item, casting to the expected features
|
| 542 |
new_row_ds = Dataset.from_dict(new_data_dict_of_lists, features=expected_features)
|
| 543 |
-
# Concatenate
|
| 544 |
combined_ds = concatenate_datasets([existing_ds, new_row_ds])
|
| 545 |
-
# Push the combined dataset
|
| 546 |
combined_ds.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train")
|
| 547 |
print(f"Successfully appended guess to {HF_DATASET_REPO_ID} (train split)")
|
| 548 |
-
|
| 549 |
except Exception as e:
|
| 550 |
print(f"Could not load or append to existing dataset/split. Creating 'train' split with the new item. Error: {e}")
|
| 551 |
-
# Create dataset from only the new item, with explicit features
|
| 552 |
ds_new = Dataset.from_dict(new_data_dict_of_lists, features=expected_features)
|
| 553 |
-
# Push this new dataset as the 'train' split
|
| 554 |
ds_new.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train")
|
| 555 |
print(f"Successfully created and logged new 'train' split to {HF_DATASET_REPO_ID}")
|
| 556 |
else:
|
|
@@ -564,136 +467,45 @@ with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as d
|
|
| 564 |
session_msg = ", ".join(
|
| 565 |
f"{k}: {_fmt(v)}" for k, v in sess.items()
|
| 566 |
)
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
username_input_update = gr.update(visible=False, interactive=True)
|
| 570 |
-
add_score_button_update = gr.update(visible=False)
|
| 571 |
-
current_feedback_text = add_score_feedback.value if hasattr(add_score_feedback, 'value') and add_score_feedback.value else ""
|
| 572 |
-
add_score_feedback_update = gr.update(visible=has_added_score_curr, value=current_feedback_text)
|
| 573 |
-
|
| 574 |
-
session_total_attempts = sum(stats["attempts"] for stats in sess.values())
|
| 575 |
-
|
| 576 |
-
if not is_example and not has_added_score_curr:
|
| 577 |
-
if session_total_attempts >= 1 :
|
| 578 |
-
username_input_update = gr.update(visible=True, interactive=True)
|
| 579 |
-
add_score_button_update = gr.update(visible=True, interactive=True)
|
| 580 |
-
add_score_feedback_update = gr.update(visible=False, value="")
|
| 581 |
-
else:
|
| 582 |
-
username_input_update = gr.update(visible=False, value=username_input.value if hasattr(username_input, 'value') else "")
|
| 583 |
-
add_score_button_update = gr.update(visible=False)
|
| 584 |
-
add_score_feedback_update = gr.update(visible=False, value="")
|
| 585 |
-
elif has_added_score_curr:
|
| 586 |
-
username_input_update = gr.update(visible=True, interactive=False, value=username_input.value if hasattr(username_input, 'value') else "")
|
| 587 |
-
add_score_button_update = gr.update(visible=True, interactive=False)
|
| 588 |
-
add_score_feedback_update = gr.update(visible=True)
|
| 589 |
-
|
| 590 |
-
quant_data, overall_user_data, _ = update_leaderboards_data()
|
| 591 |
return (feedback,
|
| 592 |
gr.update(interactive=False),
|
| 593 |
gr.update(interactive=False),
|
| 594 |
session_msg,
|
| 595 |
-
session_stats,
|
| 596 |
-
quant_data
|
| 597 |
-
overall_user_data,
|
| 598 |
-
username_input_update,
|
| 599 |
-
add_score_button_update,
|
| 600 |
-
add_score_feedback_update)
|
| 601 |
|
| 602 |
image1_btn.click(
|
| 603 |
-
fn=lambda mapping, sess, is_ex,
|
| 604 |
-
inputs=[correct_mapping_state, session_stats_state, is_example_state,
|
| 605 |
-
prompt_state, seed_state, results_state,
|
| 606 |
outputs=[feedback_box, image1_btn, image2_btn,
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
username_input, add_score_button, add_score_feedback],
|
| 610 |
)
|
| 611 |
image2_btn.click(
|
| 612 |
-
fn=lambda mapping, sess, is_ex,
|
| 613 |
-
inputs=[correct_mapping_state, session_stats_state, is_example_state,
|
| 614 |
-
prompt_state, seed_state, results_state,
|
| 615 |
outputs=[feedback_box, image1_btn, image2_btn,
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
username_input, add_score_button, add_score_feedback],
|
| 619 |
)
|
| 620 |
|
| 621 |
-
def handle_add_score_to_leaderboard(username_str, current_session_stats_dict):
|
| 622 |
-
if not username_str or not username_str.strip():
|
| 623 |
-
return ("Username is required.",
|
| 624 |
-
gr.update(interactive=True),
|
| 625 |
-
gr.update(interactive=True),
|
| 626 |
-
False,
|
| 627 |
-
None, None)
|
| 628 |
-
|
| 629 |
-
user_stats = _load_user_stats()
|
| 630 |
-
user_key = username_str.strip()
|
| 631 |
-
|
| 632 |
-
session_total_session_attempts = sum(stats["attempts"] for stats in current_session_stats_dict.values())
|
| 633 |
-
if session_total_session_attempts == 0:
|
| 634 |
-
return ("No attempts made in this session to add to leaderboard.",
|
| 635 |
-
gr.update(interactive=True),
|
| 636 |
-
gr.update(interactive=True),
|
| 637 |
-
False, None, None)
|
| 638 |
-
|
| 639 |
-
if user_key not in user_stats:
|
| 640 |
-
user_stats[user_key] = {}
|
| 641 |
-
|
| 642 |
-
for method, stats in current_session_stats_dict.items():
|
| 643 |
-
session_method_correct = stats["correct"]
|
| 644 |
-
session_method_attempts = stats["attempts"]
|
| 645 |
-
|
| 646 |
-
if session_method_attempts == 0:
|
| 647 |
-
continue
|
| 648 |
-
|
| 649 |
-
if method not in user_stats[user_key]:
|
| 650 |
-
user_stats[user_key][method] = {"correct": 0, "attempts": 0}
|
| 651 |
-
|
| 652 |
-
user_stats[user_key][method]["correct"] += session_method_correct
|
| 653 |
-
user_stats[user_key][method]["attempts"] += session_method_attempts
|
| 654 |
-
|
| 655 |
-
_save_user_stats(user_stats)
|
| 656 |
-
|
| 657 |
-
new_quant_data, new_overall_user_data, _ = update_leaderboards_data()
|
| 658 |
-
feedback_msg = f"Score for '{user_key}' submitted to leaderboard!"
|
| 659 |
-
return (feedback_msg,
|
| 660 |
-
gr.update(interactive=False),
|
| 661 |
-
gr.update(interactive=False),
|
| 662 |
-
True,
|
| 663 |
-
new_quant_data,
|
| 664 |
-
new_overall_user_data)
|
| 665 |
-
add_score_button.click(
|
| 666 |
-
fn=handle_add_score_to_leaderboard,
|
| 667 |
-
inputs=[username_input, session_stats_state],
|
| 668 |
-
outputs=[add_score_feedback, username_input, add_score_button, has_added_score_state, quant_df, user_df]
|
| 669 |
-
)
|
| 670 |
with gr.TabItem("Leaderboard"):
|
| 671 |
gr.Markdown("## Quantization Method Leaderboard *(Lower % ⇒ harder to detect)*")
|
| 672 |
leaderboard_tab_quant_df = gr.DataFrame(
|
| 673 |
headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
|
| 674 |
interactive=False, col_count=(4, "fixed"), label="Quantization Method Leaderboard"
|
| 675 |
)
|
| 676 |
-
gr.Markdown("---")
|
| 677 |
-
|
| 678 |
-
leaderboard_tab_user_df_8bit = gr.DataFrame(
|
| 679 |
-
headers=["User", "Correct Guesses", "Total Attempts", "Accuracy %"],
|
| 680 |
-
interactive=False, col_count=(4, "fixed"), label="8-bit bnb User Leaderboard"
|
| 681 |
-
)
|
| 682 |
-
leaderboard_tab_user_df_4bit = gr.DataFrame(
|
| 683 |
-
headers=["User", "Correct Guesses", "Total Attempts", "Accuracy %"],
|
| 684 |
-
interactive=False, col_count=(4, "fixed"), label="4-bit bnb User Leaderboard"
|
| 685 |
-
)
|
| 686 |
|
| 687 |
def update_all_leaderboards_for_tab():
|
| 688 |
-
q_rows
|
| 689 |
-
|
| 690 |
-
user_rows_4bit = per_method_u_dict.get("4-bit bnb", [])
|
| 691 |
-
return q_rows, user_rows_8bit, user_rows_4bit
|
| 692 |
|
| 693 |
demo.load(update_all_leaderboards_for_tab, outputs=[
|
| 694 |
-
leaderboard_tab_quant_df,
|
| 695 |
-
leaderboard_tab_user_df_8bit,
|
| 696 |
-
leaderboard_tab_user_df_4bit
|
| 697 |
])
|
| 698 |
|
| 699 |
if __name__ == "__main__":
|
|
|
|
| 35 |
with open(AGG_FILE, "w") as f:
|
| 36 |
json.dump(stats, f, indent=2)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
print(f"Using device: {DEVICE}")
|
| 40 |
|
|
|
|
| 44 |
DEFAULT_NUM_INFERENCE_STEPS = 15
|
| 45 |
DEFAULT_MAX_SEQUENCE_LENGTH = 512
|
| 46 |
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")
|
| 47 |
+
HF_DATASET_REPO_ID = "diffusers/flux-quant-challenge-submissions"
|
| 48 |
|
| 49 |
CACHED_PIPES = {}
|
| 50 |
def load_bf16_pipeline():
|
|
|
|
| 81 |
torch_dtype=torch.bfloat16
|
| 82 |
)
|
| 83 |
pipe.to(DEVICE)
|
|
|
|
| 84 |
end_time = time.time()
|
| 85 |
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 86 |
print(f"8-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
|
|
|
|
| 102 |
torch_dtype=torch.bfloat16
|
| 103 |
)
|
| 104 |
pipe.to(DEVICE)
|
|
|
|
| 105 |
end_time = time.time()
|
| 106 |
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 107 |
print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
|
|
|
|
| 114 |
@spaces.GPU(duration=240)
|
| 115 |
def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)):
|
| 116 |
if not prompt:
|
| 117 |
+
return None, {}, gr.update(value="Please enter a prompt.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
|
| 118 |
|
| 119 |
if not quantization_choice:
|
| 120 |
+
return None, {}, gr.update(value="Please select a quantization method.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
|
| 121 |
|
| 122 |
if quantization_choice == "8-bit bnb":
|
| 123 |
quantized_load_func = load_bnb_8bit_pipeline
|
|
|
|
| 126 |
quantized_load_func = load_bnb_4bit_pipeline
|
| 127 |
quantized_label = "Quantized (4-bit bnb)"
|
| 128 |
else:
|
| 129 |
+
return None, {}, gr.update(value="Invalid quantization choice.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
|
| 130 |
|
| 131 |
model_configs = [
|
| 132 |
("Original", load_bf16_pipeline),
|
|
|
|
| 168 |
|
| 169 |
except Exception as e:
|
| 170 |
print(f"Error during {label} model processing: {e}")
|
| 171 |
+
return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
|
| 172 |
|
| 173 |
|
| 174 |
if len(results) != len(model_configs):
|
| 175 |
+
return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
|
| 176 |
|
| 177 |
shuffled_results = results.copy()
|
| 178 |
random.shuffle(shuffled_results)
|
|
|
|
| 243 |
return f"{pct:.1f}%", pct
|
| 244 |
return "N/A", -1.0
|
| 245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
def update_leaderboards_data():
|
| 247 |
agg = _load_agg_stats()
|
| 248 |
quant_rows = []
|
|
|
|
| 255 |
acc_str
|
| 256 |
])
|
| 257 |
quant_rows.sort(key=lambda r: r[1]/r[2] if r[2] != 0 else 1e9)
|
| 258 |
+
return quant_rows
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
quant_df = gr.DataFrame(
|
| 261 |
headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
|
| 262 |
interactive=False, col_count=(4, "fixed")
|
| 263 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo:
|
| 266 |
gr.Markdown("# FLUX Model Quantization Challenge")
|
|
|
|
| 307 |
|
| 308 |
with gr.Row():
|
| 309 |
session_score_box = gr.Textbox(label="Your accuracy this session", interactive=False)
|
| 310 |
+
|
| 311 |
+
gr.Markdown("""
|
| 312 |
+
### Dataset Information
|
| 313 |
+
Unless you opt out below, your submissions will be recorded in a dataset. This dataset contains anonymized challenge results including prompts, images, quantization methods,
|
| 314 |
+
and whether guesses were correct.
|
| 315 |
+
""")
|
| 316 |
+
|
| 317 |
+
opt_out_checkbox = gr.Checkbox(
|
| 318 |
+
label="Opt out of data collection (don't record my submissions to the dataset)",
|
| 319 |
+
value=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
)
|
| 321 |
|
| 322 |
correct_mapping_state = gr.State({})
|
|
|
|
| 325 |
"4-bit bnb": {"attempts": 0, "correct": 0}}
|
| 326 |
)
|
| 327 |
is_example_state = gr.State(False)
|
|
|
|
| 328 |
prompt_state = gr.State("")
|
| 329 |
seed_state = gr.State(None)
|
| 330 |
results_state = gr.State([])
|
| 331 |
|
| 332 |
def _load_example_and_update_dfs(sel_summary):
|
|
|
|
| 333 |
idx = next((i for i, ex in enumerate(EXAMPLES) if ex["summary"] == sel_summary), -1)
|
| 334 |
if idx == -1:
|
|
|
|
| 335 |
print(f"Error: Example with summary '{sel_summary}' not found.")
|
| 336 |
+
return (gr.update(), gr.update(), gr.update(), False, gr.update(), "", None, [])
|
| 337 |
|
| 338 |
ex = EXAMPLES[idx]
|
| 339 |
gallery_items, mapping, prompt = load_example(idx)
|
| 340 |
+
quant_data = update_leaderboards_data()
|
| 341 |
+
return gallery_items, mapping, prompt, True, quant_data, "", None, []
|
| 342 |
|
| 343 |
ex_selector.change(
|
| 344 |
fn=_load_example_and_update_dfs,
|
| 345 |
inputs=ex_selector,
|
| 346 |
+
outputs=[output_gallery, correct_mapping_state, prompt_input, is_example_state, quant_df,
|
| 347 |
+
prompt_state, seed_state, results_state],
|
| 348 |
).then(
|
| 349 |
lambda: (gr.update(interactive=True), gr.update(interactive=True)),
|
| 350 |
outputs=[image1_btn, image2_btn],
|
|
|
|
| 354 |
fn=generate_images,
|
| 355 |
inputs=[prompt_input, quantization_choice_radio],
|
| 356 |
outputs=[output_gallery, correct_mapping_state, prompt_state, seed_state, results_state,
|
| 357 |
+
feedback_box]
|
| 358 |
).then(
|
| 359 |
+
lambda: False, # for is_example_state
|
| 360 |
+
outputs=[is_example_state]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
).then(
|
| 362 |
lambda: (gr.update(interactive=True),
|
| 363 |
+
gr.update(interactive=True),
|
| 364 |
+
""),
|
| 365 |
outputs=[image1_btn, image2_btn, feedback_box],
|
| 366 |
)
|
| 367 |
|
| 368 |
+
def choose(choice_string, mapping, session_stats, is_example,
|
| 369 |
+
prompt, seed, results, opt_out):
|
| 370 |
feedback = check_guess(choice_string, mapping)
|
| 371 |
|
| 372 |
if not mapping:
|
| 373 |
+
return feedback, gr.update(), gr.update(), "", session_stats, gr.update()
|
| 374 |
|
| 375 |
quant_label_from_mapping = next((label for label in mapping.values() if "Quantized" in label), None)
|
| 376 |
if not quant_label_from_mapping:
|
| 377 |
print("Error: Could not determine quantization label from mapping:", mapping)
|
| 378 |
return ("Internal Error: Could not process results.", gr.update(interactive=False), gr.update(interactive=False),
|
| 379 |
+
"", session_stats, gr.update())
|
| 380 |
|
| 381 |
quant_key = "8-bit bnb" if "8-bit bnb" in quant_label_from_mapping else "4-bit bnb"
|
|
|
|
| 382 |
got_it_right = "Correct!" in feedback
|
|
|
|
| 383 |
sess = session_stats.copy()
|
|
|
|
| 384 |
|
| 385 |
+
if not is_example: # Only log and update stats if it's not an example run
|
| 386 |
sess[quant_key]["attempts"] += 1
|
| 387 |
if got_it_right:
|
| 388 |
sess[quant_key]["correct"] += 1
|
| 389 |
+
session_stats = sess # Update the state for the UI
|
| 390 |
|
| 391 |
AGG_STATS = _load_agg_stats()
|
| 392 |
AGG_STATS[quant_key]["attempts"] += 1
|
|
|
|
| 398 |
print("Warning: HF_TOKEN not set. Skipping dataset logging.")
|
| 399 |
elif not results:
|
| 400 |
print("Warning: Results state is empty. Skipping dataset logging.")
|
| 401 |
+
elif opt_out:
|
| 402 |
+
print("User opted out of dataset logging. Skipping.")
|
| 403 |
else:
|
| 404 |
print(f"Logging guess to HF Dataset: {HF_DATASET_REPO_ID}")
|
| 405 |
original_image = None
|
|
|
|
| 438 |
"quantized_image_displayed_position": [f"Image {quantized_image_pos + 1}"],
|
| 439 |
"user_guess_displayed_position": [choice_string],
|
| 440 |
"correct_guess": [got_it_right],
|
| 441 |
+
"username": [None], # Log None for username
|
| 442 |
}
|
|
|
|
| 443 |
try:
|
|
|
|
| 444 |
existing_ds = load_dataset(
|
| 445 |
HF_DATASET_REPO_ID,
|
| 446 |
split="train",
|
| 447 |
token=HF_TOKEN,
|
| 448 |
features=expected_features,
|
|
|
|
|
|
|
| 449 |
)
|
|
|
|
| 450 |
new_row_ds = Dataset.from_dict(new_data_dict_of_lists, features=expected_features)
|
|
|
|
| 451 |
combined_ds = concatenate_datasets([existing_ds, new_row_ds])
|
|
|
|
| 452 |
combined_ds.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train")
|
| 453 |
print(f"Successfully appended guess to {HF_DATASET_REPO_ID} (train split)")
|
|
|
|
| 454 |
except Exception as e:
|
| 455 |
print(f"Could not load or append to existing dataset/split. Creating 'train' split with the new item. Error: {e}")
|
|
|
|
| 456 |
ds_new = Dataset.from_dict(new_data_dict_of_lists, features=expected_features)
|
|
|
|
| 457 |
ds_new.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train")
|
| 458 |
print(f"Successfully created and logged new 'train' split to {HF_DATASET_REPO_ID}")
|
| 459 |
else:
|
|
|
|
| 467 |
session_msg = ", ".join(
|
| 468 |
f"{k}: {_fmt(v)}" for k, v in sess.items()
|
| 469 |
)
|
| 470 |
+
|
| 471 |
+
quant_data = update_leaderboards_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
return (feedback,
|
| 473 |
gr.update(interactive=False),
|
| 474 |
gr.update(interactive=False),
|
| 475 |
session_msg,
|
| 476 |
+
session_stats, # Return the potentially updated session_stats
|
| 477 |
+
quant_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
|
| 479 |
image1_btn.click(
|
| 480 |
+
fn=lambda mapping, sess, is_ex, p, s, r, opt_out: choose("Image 1", mapping, sess, is_ex, p, s, r, opt_out),
|
| 481 |
+
inputs=[correct_mapping_state, session_stats_state, is_example_state,
|
| 482 |
+
prompt_state, seed_state, results_state, opt_out_checkbox],
|
| 483 |
outputs=[feedback_box, image1_btn, image2_btn,
|
| 484 |
+
session_score_box, session_stats_state,
|
| 485 |
+
quant_df],
|
|
|
|
| 486 |
)
|
| 487 |
image2_btn.click(
|
| 488 |
+
fn=lambda mapping, sess, is_ex, p, s, r, opt_out: choose("Image 2", mapping, sess, is_ex, p, s, r, opt_out),
|
| 489 |
+
inputs=[correct_mapping_state, session_stats_state, is_example_state,
|
| 490 |
+
prompt_state, seed_state, results_state, opt_out_checkbox],
|
| 491 |
outputs=[feedback_box, image1_btn, image2_btn,
|
| 492 |
+
session_score_box, session_stats_state,
|
| 493 |
+
quant_df],
|
|
|
|
| 494 |
)
|
| 495 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
with gr.TabItem("Leaderboard"):
|
| 497 |
gr.Markdown("## Quantization Method Leaderboard *(Lower % ⇒ harder to detect)*")
|
| 498 |
leaderboard_tab_quant_df = gr.DataFrame(
|
| 499 |
headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
|
| 500 |
interactive=False, col_count=(4, "fixed"), label="Quantization Method Leaderboard"
|
| 501 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
|
| 503 |
def update_all_leaderboards_for_tab():
|
| 504 |
+
q_rows = update_leaderboards_data()
|
| 505 |
+
return q_rows # Only return quantization method data
|
|
|
|
|
|
|
| 506 |
|
| 507 |
demo.load(update_all_leaderboards_for_tab, outputs=[
|
| 508 |
+
leaderboard_tab_quant_df,
|
|
|
|
|
|
|
| 509 |
])
|
| 510 |
|
| 511 |
if __name__ == "__main__":
|