Spaces:
Running
on
Zero
Running
on
Zero
| import json | |
| import os | |
| from typing import * | |
| import numpy as np | |
| import torch | |
| import utils3d.torch | |
| from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin | |
| from ..modules.sparse.basic import SparseTensor | |
| from .. import models | |
| from ..utils.render_utils import get_renderer | |
| from ..utils.dist_utils import read_file_dist | |
| from ..utils.data_utils import load_balanced_group_indices | |
| class SLatVisMixin: | |
| def __init__( | |
| self, | |
| *args, | |
| pretrained_slat_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/slat_dec_gs_swin8_B_64l8gs32_fp16', | |
| slat_dec_path: Optional[str] = None, | |
| slat_dec_ckpt: Optional[str] = None, | |
| **kwargs | |
| ): | |
| super().__init__(*args, **kwargs) | |
| self.slat_dec = None | |
| self.pretrained_slat_dec = pretrained_slat_dec | |
| self.slat_dec_path = slat_dec_path | |
| self.slat_dec_ckpt = slat_dec_ckpt | |
| def _loading_slat_dec(self): | |
| if self.slat_dec is not None: | |
| return | |
| if self.slat_dec_path is not None: | |
| cfg = json.load(open(os.path.join(self.slat_dec_path, 'config.json'), 'r')) | |
| decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args']) | |
| ckpt_path = os.path.join(self.slat_dec_path, 'ckpts', f'decoder_{self.slat_dec_ckpt}.pt') | |
| decoder.load_state_dict(torch.load(read_file_dist(ckpt_path), map_location='cpu', weights_only=True)) | |
| else: | |
| decoder = models.from_pretrained(self.pretrained_slat_dec) | |
| self.slat_dec = decoder.cuda().eval() | |
| def _delete_slat_dec(self): | |
| del self.slat_dec | |
| self.slat_dec = None | |
| def decode_latent(self, z, batch_size=4): | |
| self._loading_slat_dec() | |
| reps = [] | |
| if self.normalization is not None: | |
| z = z * self.std.to(z.device) + self.mean.to(z.device) | |
| for i in range(0, z.shape[0], batch_size): | |
| reps.append(self.slat_dec(z[i:i+batch_size])) | |
| reps = sum(reps, []) | |
| self._delete_slat_dec() | |
| return reps | |
| def visualize_sample(self, x_0: Union[SparseTensor, dict]): | |
| x_0 = x_0 if isinstance(x_0, SparseTensor) else x_0['x_0'] | |
| reps = self.decode_latent(x_0.cuda()) | |
| # Build camera | |
| yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2] | |
| yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4) | |
| yaws = [y + yaws_offset for y in yaws] | |
| pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)] | |
| exts = [] | |
| ints = [] | |
| for yaw, pitch in zip(yaws, pitch): | |
| orig = torch.tensor([ | |
| np.sin(yaw) * np.cos(pitch), | |
| np.cos(yaw) * np.cos(pitch), | |
| np.sin(pitch), | |
| ]).float().cuda() * 2 | |
| fov = torch.deg2rad(torch.tensor(40)).cuda() | |
| extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) | |
| intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov) | |
| exts.append(extrinsics) | |
| ints.append(intrinsics) | |
| renderer = get_renderer(reps[0]) | |
| images = [] | |
| for representation in reps: | |
| image = torch.zeros(3, 1024, 1024).cuda() | |
| tile = [2, 2] | |
| for j, (ext, intr) in enumerate(zip(exts, ints)): | |
| res = renderer.render(representation, ext, intr) | |
| image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color'] | |
| images.append(image) | |
| images = torch.stack(images) | |
| return images | |
| class SLat(SLatVisMixin, StandardDatasetBase): | |
| """ | |
| structured latent dataset | |
| Args: | |
| roots (str): path to the dataset | |
| latent_model (str): name of the latent model | |
| min_aesthetic_score (float): minimum aesthetic score | |
| max_num_voxels (int): maximum number of voxels | |
| normalization (dict): normalization stats | |
| pretrained_slat_dec (str): name of the pretrained slat decoder | |
| slat_dec_path (str): path to the slat decoder, if given, will override the pretrained_slat_dec | |
| slat_dec_ckpt (str): name of the slat decoder checkpoint | |
| """ | |
| def __init__(self, | |
| roots: str, | |
| *, | |
| latent_model: str, | |
| min_aesthetic_score: float = 5.0, | |
| max_num_voxels: int = 32768, | |
| normalization: Optional[dict] = None, | |
| pretrained_slat_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/slat_dec_gs_swin8_B_64l8gs32_fp16', | |
| slat_dec_path: Optional[str] = None, | |
| slat_dec_ckpt: Optional[str] = None, | |
| ): | |
| self.normalization = normalization | |
| self.latent_model = latent_model | |
| self.min_aesthetic_score = min_aesthetic_score | |
| self.max_num_voxels = max_num_voxels | |
| self.value_range = (0, 1) | |
| super().__init__( | |
| roots, | |
| pretrained_slat_dec=pretrained_slat_dec, | |
| slat_dec_path=slat_dec_path, | |
| slat_dec_ckpt=slat_dec_ckpt, | |
| ) | |
| self.loads = [self.metadata.loc[sha256, 'num_voxels'] for _, sha256 in self.instances] | |
| if self.normalization is not None: | |
| self.mean = torch.tensor(self.normalization['mean']).reshape(1, -1) | |
| self.std = torch.tensor(self.normalization['std']).reshape(1, -1) | |
| def filter_metadata(self, metadata): | |
| stats = {} | |
| metadata = metadata[metadata[f'latent_{self.latent_model}']] | |
| stats['With latent'] = len(metadata) | |
| metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] | |
| stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) | |
| metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels] | |
| stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata) | |
| return metadata, stats | |
| def get_instance(self, root, instance): | |
| data = np.load(os.path.join(root, 'latents', self.latent_model, f'{instance}.npz')) | |
| coords = torch.tensor(data['coords']).int() | |
| feats = torch.tensor(data['feats']).float() | |
| if self.normalization is not None: | |
| feats = (feats - self.mean) / self.std | |
| return { | |
| 'coords': coords, | |
| 'feats': feats, | |
| } | |
| def collate_fn(batch, split_size=None): | |
| if split_size is None: | |
| group_idx = [list(range(len(batch)))] | |
| else: | |
| group_idx = load_balanced_group_indices([b['coords'].shape[0] for b in batch], split_size) | |
| packs = [] | |
| for group in group_idx: | |
| sub_batch = [batch[i] for i in group] | |
| pack = {} | |
| coords = [] | |
| feats = [] | |
| layout = [] | |
| start = 0 | |
| for i, b in enumerate(sub_batch): | |
| coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1)) | |
| feats.append(b['feats']) | |
| layout.append(slice(start, start + b['coords'].shape[0])) | |
| start += b['coords'].shape[0] | |
| coords = torch.cat(coords) | |
| feats = torch.cat(feats) | |
| pack['x_0'] = SparseTensor( | |
| coords=coords, | |
| feats=feats, | |
| ) | |
| pack['x_0']._shape = torch.Size([len(group), *sub_batch[0]['feats'].shape[1:]]) | |
| pack['x_0'].register_spatial_cache('layout', layout) | |
| # collate other data | |
| keys = [k for k in sub_batch[0].keys() if k not in ['coords', 'feats']] | |
| for k in keys: | |
| if isinstance(sub_batch[0][k], torch.Tensor): | |
| pack[k] = torch.stack([b[k] for b in sub_batch]) | |
| elif isinstance(sub_batch[0][k], list): | |
| pack[k] = sum([b[k] for b in sub_batch], []) | |
| else: | |
| pack[k] = [b[k] for b in sub_batch] | |
| packs.append(pack) | |
| if split_size is None: | |
| return packs[0] | |
| return packs | |
| class TextConditionedSLat(TextConditionedMixin, SLat): | |
| """ | |
| Text conditioned structured latent dataset | |
| """ | |
| pass | |
| class ImageConditionedSLat(ImageConditionedMixin, SLat): | |
| """ | |
| Image conditioned structured latent dataset | |
| """ | |
| pass | |