Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import os | |
| import shutil | |
| import json | |
| os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| import imageio | |
| from easydict import EasyDict as edict | |
| from trellis.pipelines import TrellisTextTo3DPipeline | |
| from trellis.representations import Gaussian, MeshExtractResult | |
| from trellis.utils import render_utils, postprocessing_utils | |
| import traceback | |
| import sys | |
| # Add JSON encoder for NumPy arrays | |
| class NumpyEncoder(json.JSONEncoder): | |
| def default(self, obj): | |
| if isinstance(obj, np.ndarray): | |
| return obj.tolist() | |
| return json.JSONEncoder.default(self, obj) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| def start_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| # Use shutil.rmtree with ignore_errors=True for robustness | |
| shutil.rmtree(user_dir, ignore_errors=True) | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
| return { | |
| 'gaussian': { | |
| **gs.init_params, | |
| '_xyz': gs._xyz.cpu().numpy(), | |
| '_features_dc': gs._features_dc.cpu().numpy(), | |
| '_scaling': gs._scaling.cpu().numpy(), | |
| '_rotation': gs._rotation.cpu().numpy(), | |
| '_opacity': gs._opacity.cpu().numpy(), | |
| }, | |
| 'mesh': { | |
| 'vertices': mesh.vertices.cpu().numpy(), | |
| 'faces': mesh.faces.cpu().numpy(), | |
| }, | |
| } | |
| def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
| gs = Gaussian( | |
| aabb=state['gaussian']['aabb'], | |
| sh_degree=state['gaussian']['sh_degree'], | |
| mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
| scaling_bias=state['gaussian']['scaling_bias'], | |
| opacity_bias=state['gaussian']['opacity_bias'], | |
| scaling_activation=state['gaussian']['scaling_activation'], | |
| ) | |
| # Ensure tensors are created on the correct device ('cuda') | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda', dtype=torch.float32) | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda', dtype=torch.float32) | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda', dtype=torch.float32) | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda', dtype=torch.float32) | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda', dtype=torch.float32) | |
| mesh = edict( | |
| vertices=torch.tensor(state['mesh']['vertices'], device='cuda', dtype=torch.float32), | |
| faces=torch.tensor(state['mesh']['faces'], device='cuda', dtype=torch.int64), # Faces are usually integers | |
| ) | |
| return gs, mesh | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| """ | |
| Get the random seed. | |
| """ | |
| return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
| def text_to_3d( | |
| prompt: str, | |
| seed: int, | |
| ss_guidance_strength: float, | |
| ss_sampling_steps: int, | |
| slat_guidance_strength: float, | |
| slat_sampling_steps: int, | |
| req: gr.Request, | |
| ) -> dict: # MODIFIED: Now returns only the state dict | |
| """ | |
| Convert a text prompt to a 3D model state object. | |
| Args: | |
| prompt (str): The text prompt. | |
| seed (int): The random seed. | |
| ss_guidance_strength (float): The guidance strength for sparse structure generation. | |
| ss_sampling_steps (int): The number of sampling steps for sparse structure generation. | |
| slat_guidance_strength (float): The guidance strength for structured latent generation. | |
| slat_sampling_steps (int): The number of sampling steps for structured latent generation. | |
| Returns: | |
| dict: The JSON-serializable state object containing the generated 3D model info. | |
| """ | |
| # Ensure user directory exists (redundant if start_session is always called, but safe) | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| print(f"[{req.session_hash}] Running text_to_3d for prompt: {prompt}") # Add logging | |
| outputs = pipeline.run( | |
| prompt, | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| }, | |
| ) | |
| # REMOVED: Video rendering logic moved to render_preview_video | |
| # Create the state object and ensure it's JSON serializable for API calls | |
| state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
| # Convert to serializable format | |
| serializable_state = json.loads(json.dumps(state, cls=NumpyEncoder)) | |
| print(f"[{req.session_hash}] text_to_3d completed. Returning state.") # Modified log message | |
| torch.cuda.empty_cache() | |
| # --- REVERTED DEBUGGING --- | |
| # Remove the temporary simple dictionary return | |
| # print("[DEBUG] Returning simple dict for API test.") | |
| # return {"status": "test_success", "received_prompt": prompt} | |
| # --- END REVERTED DEBUGGING --- | |
| # Original return line (restored): | |
| return serializable_state # MODIFIED: Return only state | |
| # --- NEW FUNCTION --- | |
| def render_preview_video(state: dict, req: gr.Request) -> str: | |
| """ | |
| Renders a preview video from the provided state object. | |
| Args: | |
| state (dict): The state object containing Gaussian and mesh data. | |
| req (gr.Request): Gradio request object for session hash. | |
| Returns: | |
| str: The path to the rendered video file. | |
| """ | |
| if not state: | |
| print(f"[{req.session_hash}] render_preview_video called with empty state. Returning None.") | |
| # Consider returning a placeholder or raising an error if state is required | |
| return None | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) # Ensure directory exists | |
| print(f"[{req.session_hash}] Unpacking state for video rendering.") # Add logging | |
| gs, mesh = unpack_state(state) | |
| print(f"[{req.session_hash}] Rendering video...") # Add logging | |
| video = render_utils.render_video(gs, num_frames=120)['color'] | |
| video_geo = render_utils.render_video(mesh, num_frames=120)['normal'] | |
| video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
| video_path = os.path.join(user_dir, 'preview_sample.mp4') # Use a distinct name | |
| print(f"[{req.session_hash}] Saving video to {video_path}") # Add logging | |
| imageio.mimsave(video_path, video, fps=15) | |
| torch.cuda.empty_cache() | |
| return video_path | |
| # --- END NEW FUNCTION --- | |
| def extract_glb( | |
| state: dict, | |
| mesh_simplify: float, | |
| texture_size: int, | |
| req: gr.Request, | |
| ) -> Tuple[str, str]: | |
| """ | |
| Extract a GLB file from the 3D model state. | |
| Args: | |
| state (dict): The state of the generated 3D model. | |
| mesh_simplify (float): The mesh simplification factor. | |
| texture_size (int): The texture resolution. | |
| Returns: | |
| str: The path to the extracted GLB file (for Model3D component). | |
| str: The path to the extracted GLB file (for DownloadButton). | |
| """ | |
| if not state: | |
| print(f"[{req.session_hash}] extract_glb called with empty state. Returning None.") | |
| return None, None # Return Nones if state is missing | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| print(f"[{req.session_hash}] Unpacking state for GLB extraction.") # Add logging | |
| gs, mesh = unpack_state(state) | |
| print(f"[{req.session_hash}] Extracting GLB (simplify={mesh_simplify}, texture={texture_size})...") # Add logging | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = os.path.join(user_dir, 'sample.glb') | |
| print(f"[{req.session_hash}] Saving GLB to {glb_path}") # Add logging | |
| glb.export(glb_path) | |
| torch.cuda.empty_cache() | |
| # Return the same path for both Model3D and DownloadButton components | |
| return glb_path, glb_path | |
| def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
| """ | |
| Extract a Gaussian PLY file from the 3D model state. | |
| Args: | |
| state (dict): The state of the generated 3D model. | |
| Returns: | |
| str: The path to the extracted Gaussian file (for Model3D component). | |
| str: The path to the extracted Gaussian file (for DownloadButton). | |
| """ | |
| if not state: | |
| print(f"[{req.session_hash}] extract_gaussian called with empty state. Returning None.") | |
| return None, None # Return Nones if state is missing | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| print(f"[{req.session_hash}] Unpacking state for Gaussian extraction.") # Add logging | |
| gs, _ = unpack_state(state) | |
| gaussian_path = os.path.join(user_dir, 'sample.ply') | |
| print(f"[{req.session_hash}] Saving Gaussian PLY to {gaussian_path}") # Add logging | |
| gs.save_ply(gaussian_path) | |
| torch.cuda.empty_cache() | |
| # Return the same path for both Model3D and DownloadButton components | |
| return gaussian_path, gaussian_path | |
| # --- NEW COMBINED API FUNCTION --- | |
| # Allow more time for combined generation + extraction | |
| def generate_and_extract_glb( | |
| # Inputs mirror text_to_3d and extract_glb settings | |
| prompt: str, | |
| seed: int, | |
| ss_guidance_strength: float, | |
| ss_sampling_steps: int, | |
| slat_guidance_strength: float, | |
| slat_sampling_steps: int, | |
| mesh_simplify: float, # Added from extract_glb | |
| texture_size: int, # Added from extract_glb | |
| req: gr.Request, | |
| ) -> str: # MODIFIED: Returns only the final GLB path string | |
| """ | |
| Combines 3D model generation and GLB extraction into a single step | |
| for API usage, avoiding the need to transfer the state object. | |
| Args: | |
| prompt (str): Text prompt for generation. | |
| seed (int): Random seed. | |
| ss_guidance_strength (float): Sparse structure guidance. | |
| ss_sampling_steps (int): Sparse structure steps. | |
| slat_guidance_strength (float): Structured latent guidance. | |
| slat_sampling_steps (int): Structured latent steps. | |
| mesh_simplify (float): Mesh simplification factor for GLB. | |
| texture_size (int): Texture resolution for GLB. | |
| req (gr.Request): Gradio request object. | |
| Returns: | |
| str: The absolute path to the generated GLB file within the Space's filesystem. | |
| Returns None if any step fails. | |
| """ | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| print(f"[{req.session_hash}] API: Starting combined generation and extraction for prompt: {prompt}") | |
| # --- Step 1: Generate 3D Model (adapted from text_to_3d) --- | |
| try: | |
| print(f"[{req.session_hash}] API: Running generation pipeline...") | |
| outputs = pipeline.run( | |
| prompt, | |
| seed=seed, | |
| formats=["gaussian", "mesh"], # Need both for GLB extraction | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| }, | |
| ) | |
| # Keep handles to the direct outputs (no need to pack/unpack state) | |
| gs_output = outputs['gaussian'][0] | |
| mesh_output = outputs['mesh'][0] | |
| print(f"[{req.session_hash}] API: Generation pipeline completed.") | |
| except Exception as e: | |
| print(f"[{req.session_hash}] API: ERROR during generation pipeline: {e}") | |
| traceback.print_exc() | |
| torch.cuda.empty_cache() | |
| return None # Return None on failure | |
| # --- Step 2: Extract GLB (adapted from extract_glb) --- | |
| try: | |
| print(f"[{req.session_hash}] API: Extracting GLB (simplify={mesh_simplify}, texture={texture_size})...") | |
| # Directly use the outputs from the pipeline | |
| glb = postprocessing_utils.to_glb(gs_output, mesh_output, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = os.path.join(user_dir, 'api_generated_sample.glb') # Use a distinct name for API outputs | |
| print(f"[{req.session_hash}] API: Saving GLB to {glb_path}") | |
| glb.export(glb_path) | |
| print(f"[{req.session_hash}] API: GLB extraction completed.") | |
| except Exception as e: | |
| print(f"[{req.session_hash}] API: ERROR during GLB extraction: {e}") | |
| traceback.print_exc() | |
| torch.cuda.empty_cache() | |
| return None # Return None on failure | |
| torch.cuda.empty_cache() | |
| print(f"[{req.session_hash}] API: Combined process successful. Returning GLB path: {glb_path}") | |
| return glb_path # Return only the path to the generated GLB | |
| # --- END NEW COMBINED API FUNCTION --- | |
| # State object to hold the generated model info between steps | |
| output_buf = gr.State() | |
| # Video component placeholder (will be populated by render_preview_video) | |
| # video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) # Defined later inside the Blocks | |
| with gr.Blocks(delete_cache=(600, 600)) as demo: | |
| gr.Markdown(""" | |
| ## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
| * Type a text prompt and click "Generate" to create a 3D asset. | |
| * The preview video will appear after generation. | |
| * If you find the generated 3D asset satisfactory, click "Extract GLB" or "Extract Gaussian" to extract the file and download it. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_prompt = gr.Textbox(label="Text Prompt", lines=5) | |
| with gr.Accordion(label="Generation Settings", open=False): | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1) | |
| gr.Markdown("Stage 2: Structured Latent Generation") | |
| with gr.Row(): | |
| slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Accordion(label="GLB Extraction Settings", open=False): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| with gr.Row(): | |
| # Buttons start non-interactive, enabled after generation | |
| extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
| extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
| gr.Markdown(""" | |
| *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* | |
| """) | |
| with gr.Column(): | |
| # Define UI components here | |
| video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300) | |
| model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300) | |
| with gr.Row(): | |
| # Buttons start non-interactive, enabled after extraction | |
| download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
| download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
| # Define the state buffer here, outside the component definitions but inside the Blocks scope | |
| output_buf = gr.State() | |
| # --- Handlers --- | |
| demo.load(start_session) | |
| demo.unload(end_session) | |
| # --- MODIFIED UI CHAIN --- | |
| # 1. Get Seed | |
| # 2. Run text_to_3d -> outputs state to output_buf | |
| # 3. Run render_preview_video (using state from output_buf) -> outputs video to video_output | |
| # 4. Enable extraction buttons | |
| generate_btn.click( | |
| get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=[seed], | |
| queue=True # Use queue for potentially long-running steps | |
| ).then( | |
| text_to_3d, | |
| inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
| outputs=[output_buf], # text_to_3d now ONLY outputs state | |
| api_name="text_to_3d" # Keep API name consistent if needed | |
| ).then( | |
| render_preview_video, # NEW step: Render video from state | |
| inputs=[output_buf], | |
| outputs=[video_output], | |
| api_name="render_preview_video" # Assign API name if you want to call this separately | |
| ).then( | |
| lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), # Enable extraction buttons | |
| outputs=[extract_glb_btn, extract_gs_btn], | |
| ) | |
| # Clear video and disable extraction buttons if prompt is cleared or generation restarted | |
| # (Consider adding logic to clear prompt on successful generation if desired) | |
| text_prompt.change( # Example: Clear video if prompt changes | |
| lambda: (None, gr.Button(interactive=False), gr.Button(interactive=False)), | |
| outputs=[video_output, extract_glb_btn, extract_gs_btn] | |
| ) | |
| video_output.clear( # This might be redundant if text_prompt.change handles it | |
| lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
| outputs=[extract_glb_btn, extract_gs_btn], | |
| ) | |
| # --- Extraction Handlers --- | |
| # GLB Extraction: Takes state from output_buf, outputs model and download path | |
| extract_glb_btn.click( | |
| extract_glb, | |
| inputs=[output_buf, mesh_simplify, texture_size], | |
| outputs=[model_output, download_glb], # Outputs to Model3D and DownloadButton path | |
| api_name="extract_glb" | |
| ).then( | |
| lambda: gr.Button(interactive=True), # Enable download button | |
| outputs=[download_glb], | |
| ) | |
| # Gaussian Extraction: Takes state from output_buf, outputs model and download path | |
| extract_gs_btn.click( | |
| extract_gaussian, | |
| inputs=[output_buf], | |
| outputs=[model_output, download_gs], # Outputs to Model3D and DownloadButton path | |
| api_name="extract_gaussian" | |
| ).then( | |
| lambda: gr.Button(interactive=True), # Enable download button | |
| outputs=[download_gs], | |
| ) | |
| # Clear model and disable download buttons if video/state is cleared | |
| model_output.clear( | |
| lambda: (gr.Button(interactive=False), gr.Button(interactive=False)), | |
| outputs=[download_glb, download_gs], # Disable both download buttons | |
| ) | |
| # --- NEW API ENDPOINT DEFINITION --- | |
| # Define the combined function as an API endpoint. | |
| # This is *separate* from the UI button clicks. | |
| # It directly calls the combined function. | |
| demo.load( | |
| None, # No function needed on load for this endpoint | |
| inputs=[ | |
| text_prompt, # Map inputs from API request data based on order | |
| seed, | |
| ss_guidance_strength, | |
| ss_sampling_steps, | |
| slat_guidance_strength, | |
| slat_sampling_steps, | |
| mesh_simplify, | |
| texture_size | |
| ], | |
| outputs=None, # Output is handled by the function return for the API | |
| api_name="generate_and_extract_glb" # Assign the specific API name | |
| ) | |
| # --- Launch the Gradio app --- | |
| if __name__ == "__main__": | |
| print("Loading Trellis pipeline...") | |
| # Consider adding error handling for pipeline loading | |
| try: | |
| pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge") | |
| pipeline.cuda() | |
| print("Pipeline loaded successfully.") | |
| except Exception as e: | |
| print(f"Error loading pipeline: {e}") | |
| # Optionally exit or provide a fallback UI | |
| sys.exit(1) | |
| print("Launching Gradio demo...") | |
| # Enable queue for handling multiple users/requests | |
| # Set share=True if you need a public link (requires login for private spaces) | |
| demo.queue().launch() |