Spaces:
Running
on
Zero
Running
on
Zero
| from contextlib import contextmanager | |
| from typing import * | |
| import math | |
| from ..modules import sparse as sp | |
| from ..utils.elastic_utils import ElasticModuleMixin | |
| class SparseTransformerElasticMixin(ElasticModuleMixin): | |
| def _get_input_size(self, x: sp.SparseTensor, *args, **kwargs): | |
| return x.feats.shape[0] | |
| def with_mem_ratio(self, mem_ratio=1.0): | |
| if mem_ratio == 1.0: | |
| yield 1.0 | |
| return | |
| num_blocks = len(self.blocks) | |
| num_checkpoint_blocks = min(math.ceil((1 - mem_ratio) * num_blocks) + 1, num_blocks) | |
| exact_mem_ratio = 1 - (num_checkpoint_blocks - 1) / num_blocks | |
| for i in range(num_blocks): | |
| self.blocks[i].use_checkpoint = i < num_checkpoint_blocks | |
| yield exact_mem_ratio | |
| for i in range(num_blocks): | |
| self.blocks[i].use_checkpoint = False | |