Spaces:
Running
on
Zero
Running
on
Zero
another fucking try
Browse files
app.py
CHANGED
|
@@ -1,14 +1,12 @@
|
|
| 1 |
-
# Version: 1.1.
|
| 2 |
# Changes:
|
|
|
|
| 3 |
# - ENSURED `import spaces` is present for the @spaces.GPU decorator.
|
| 4 |
# - TEMPORARY DEBUGGING STEP: Commented out video rendering in `text_to_3d`
|
| 5 |
# and return None for video_path to isolate the "Session not found" error.
|
| 6 |
-
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state
|
| 7 |
-
#
|
| 8 |
-
# -
|
| 9 |
-
# instead of relying on the implicit `gr.State` object type when called via API.
|
| 10 |
-
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`)
|
| 11 |
-
# so the UI continues to function by passing the dictionary through output_buf.
|
| 12 |
# - Added minor safety checks and logging.
|
| 13 |
|
| 14 |
import gradio as gr
|
|
@@ -17,8 +15,6 @@ import spaces # <<<--- ENSURE THIS IMPORT IS PRESENT
|
|
| 17 |
import os
|
| 18 |
import shutil
|
| 19 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
| 20 |
-
# Fix potential SpConv issue if needed, try 'hash' or 'native'
|
| 21 |
-
# os.environ.setdefault('SPCONV_ALGO', 'native') # Use setdefault to avoid overwriting if already set
|
| 22 |
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original
|
| 23 |
|
| 24 |
from typing import *
|
|
@@ -35,33 +31,43 @@ import sys
|
|
| 35 |
|
| 36 |
|
| 37 |
MAX_SEED = np.iinfo(np.int32).max
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
# TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 41 |
-
TMP_DIR = '/tmp/gradio_sessions' # Use standard /tmp directory
|
| 42 |
print(f"Using temporary directory: {TMP_DIR}")
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
def start_session(req: gr.Request):
|
| 47 |
"""Creates a temporary directory for the user session."""
|
|
|
|
| 48 |
try:
|
| 49 |
session_hash = req.session_hash
|
| 50 |
if not session_hash:
|
| 51 |
-
# Fallback or generate a temporary ID if session_hash is missing (might happen on first load?)
|
| 52 |
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
|
| 53 |
print(f"Warning: No session_hash in request, using temporary ID: {session_hash}")
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
| 56 |
os.makedirs(user_dir, exist_ok=True)
|
| 57 |
-
print(f"Started session,
|
| 58 |
except Exception as e:
|
| 59 |
-
print(f"Error in start_session: {e}", file=sys.stderr)
|
| 60 |
-
|
| 61 |
|
| 62 |
|
| 63 |
def end_session(req: gr.Request):
|
| 64 |
"""Removes the temporary directory for the user session."""
|
|
|
|
| 65 |
try:
|
| 66 |
session_hash = req.session_hash
|
| 67 |
if not session_hash:
|
|
@@ -69,16 +75,16 @@ def end_session(req: gr.Request):
|
|
| 69 |
return
|
| 70 |
|
| 71 |
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
| 72 |
-
if os.path.exists(user_dir):
|
| 73 |
try:
|
| 74 |
shutil.rmtree(user_dir)
|
| 75 |
print(f"Ended session, removed directory: {user_dir}")
|
| 76 |
except OSError as e:
|
| 77 |
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
|
| 78 |
else:
|
| 79 |
-
print(f"Ended session, directory
|
| 80 |
except Exception as e:
|
| 81 |
-
print(f"Error in end_session: {e}", file=sys.stderr)
|
| 82 |
|
| 83 |
|
| 84 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
@@ -87,7 +93,7 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
| 87 |
try:
|
| 88 |
packed_data = {
|
| 89 |
'gaussian': {
|
| 90 |
-
**{k: v for k, v in gs.init_params.items()},
|
| 91 |
'_xyz': gs._xyz.detach().cpu().numpy(),
|
| 92 |
'_features_dc': gs._features_dc.detach().cpu().numpy(),
|
| 93 |
'_scaling': gs._scaling.detach().cpu().numpy(),
|
|
@@ -104,7 +110,7 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
| 104 |
except Exception as e:
|
| 105 |
print(f"Error during pack_state: {e}", file=sys.stderr)
|
| 106 |
traceback.print_exc()
|
| 107 |
-
raise
|
| 108 |
|
| 109 |
|
| 110 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
|
@@ -114,23 +120,20 @@ def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
|
| 114 |
if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
|
| 115 |
raise ValueError("Invalid state_dict structure passed to unpack_state.")
|
| 116 |
|
| 117 |
-
# Ensure the device is correctly set when unpacking
|
| 118 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 119 |
print(f"[unpack_state] Using device: {device}")
|
| 120 |
|
| 121 |
gauss_data = state_dict['gaussian']
|
| 122 |
mesh_data = state_dict['mesh']
|
| 123 |
|
| 124 |
-
# Recreate Gaussian object using parameters stored during packing
|
| 125 |
gs = Gaussian(
|
| 126 |
-
aabb=gauss_data.get('aabb'),
|
| 127 |
sh_degree=gauss_data.get('sh_degree'),
|
| 128 |
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
|
| 129 |
scaling_bias=gauss_data.get('scaling_bias'),
|
| 130 |
opacity_bias=gauss_data.get('opacity_bias'),
|
| 131 |
scaling_activation=gauss_data.get('scaling_activation'),
|
| 132 |
)
|
| 133 |
-
# Load tensors, ensuring they are created on the correct device
|
| 134 |
gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
|
| 135 |
gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
|
| 136 |
gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
|
|
@@ -138,10 +141,9 @@ def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
|
| 138 |
gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
|
| 139 |
print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")
|
| 140 |
|
| 141 |
-
# Recreate mesh object using edict for compatibility if needed elsewhere
|
| 142 |
mesh = edict(
|
| 143 |
vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
|
| 144 |
-
faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64),
|
| 145 |
)
|
| 146 |
print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")
|
| 147 |
|
|
@@ -149,14 +151,14 @@ def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
|
| 149 |
except Exception as e:
|
| 150 |
print(f"Error during unpack_state: {e}", file=sys.stderr)
|
| 151 |
traceback.print_exc()
|
| 152 |
-
raise
|
| 153 |
|
| 154 |
|
| 155 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 156 |
"""Gets a seed value, randomizing if requested."""
|
| 157 |
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 158 |
print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
|
| 159 |
-
return int(new_seed)
|
| 160 |
|
| 161 |
|
| 162 |
@spaces.GPU
|
|
@@ -168,73 +170,57 @@ def text_to_3d(
|
|
| 168 |
slat_guidance_strength: float,
|
| 169 |
slat_sampling_steps: int,
|
| 170 |
req: gr.Request,
|
| 171 |
-
) -> Tuple[dict, Optional[str]]:
|
| 172 |
"""
|
| 173 |
Generates a 3D model (Gaussian and Mesh) from text and returns a
|
| 174 |
serializable state dictionary and potentially a video preview path.
|
| 175 |
>>> TEMPORARILY DISABLED VIDEO RENDERING FOR DEBUGGING <<<
|
| 176 |
"""
|
| 177 |
print(f"[text_to_3d - DEBUG MODE] Received prompt: '{prompt}', Seed: {seed}")
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
session_hash = f"no_session_{np.random.randint(10000, 99999)}" # Use consistent fallback
|
| 181 |
-
print(f"Warning: No session_hash in text_to_3d request, using temporary ID: {session_hash}")
|
| 182 |
-
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
| 183 |
-
os.makedirs(user_dir, exist_ok=True) # Ensure it exists for this request
|
| 184 |
-
print(f"[text_to_3d - DEBUG MODE] User directory: {user_dir}")
|
| 185 |
-
|
| 186 |
-
# --- Generation Pipeline ---
|
| 187 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
print("[text_to_3d - DEBUG MODE] Running Trellis pipeline...")
|
| 189 |
-
# Add more specific pipeline settings if needed based on Trellis docs
|
| 190 |
outputs = pipeline.run(
|
| 191 |
prompt=prompt,
|
| 192 |
seed=seed,
|
| 193 |
-
formats=["gaussian", "mesh"],
|
| 194 |
sparse_structure_sampler_params={
|
| 195 |
-
"steps": int(ss_sampling_steps),
|
| 196 |
"cfg_strength": float(ss_guidance_strength),
|
| 197 |
},
|
| 198 |
slat_sampler_params={
|
| 199 |
-
"steps": int(slat_sampling_steps),
|
| 200 |
"cfg_strength": float(slat_guidance_strength),
|
| 201 |
},
|
| 202 |
-
# device='cuda' # Explicitly specify device if needed
|
| 203 |
)
|
| 204 |
print("[text_to_3d - DEBUG MODE] Pipeline run completed.")
|
| 205 |
-
except Exception as e:
|
| 206 |
-
print(f"❌ [text_to_3d - DEBUG MODE] Pipeline error: {e}", file=sys.stderr)
|
| 207 |
-
traceback.print_exc()
|
| 208 |
-
raise gr.Error(f"Trellis pipeline failed during generation: {e}") # More specific error
|
| 209 |
|
| 210 |
-
|
| 211 |
-
try:
|
| 212 |
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
|
|
|
| 213 |
except Exception as e:
|
| 214 |
-
print(f"❌ [text_to_3d - DEBUG MODE]
|
| 215 |
traceback.print_exc()
|
| 216 |
-
|
|
|
|
| 217 |
|
| 218 |
# --- Render Video Preview (TEMPORARILY DISABLED FOR DEBUGGING) ---
|
| 219 |
-
video_path = None
|
| 220 |
print("[text_to_3d - DEBUG MODE] Skipping video rendering.")
|
| 221 |
-
# --- Original Video Code Block
|
| 222 |
-
#
|
| 223 |
-
# print("[text_to_3d] Rendering video preview...")
|
| 224 |
-
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 225 |
-
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 226 |
-
# # Ensure video frames are uint8
|
| 227 |
-
# video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
|
| 228 |
-
# video_path_tmp = os.path.join(user_dir, 'sample.mp4') # Use temp name
|
| 229 |
-
# imageio.mimsave(video_path_tmp, video, fps=15, quality=8) # Added quality setting
|
| 230 |
-
# print(f"[text_to_3d] Video saved to: {video_path_tmp}")
|
| 231 |
-
# video_path = video_path_tmp # Assign if successful
|
| 232 |
-
# except Exception as e:
|
| 233 |
-
# print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
|
| 234 |
-
# traceback.print_exc()
|
| 235 |
-
# # Still return state_dict, but maybe signal video error? Return None for path.
|
| 236 |
-
# video_path = None # Indicate video failure
|
| 237 |
-
# --- Original Video Code Block End ---
|
| 238 |
|
| 239 |
# --- Cleanup and Return ---
|
| 240 |
if torch.cuda.is_available():
|
|
@@ -243,15 +229,16 @@ def text_to_3d(
|
|
| 243 |
|
| 244 |
# --- Return Serializable Dictionary and None Video Path ---
|
| 245 |
print("[text_to_3d - DEBUG MODE] Returning state dictionary and None video path.")
|
| 246 |
-
# Ensure state_dict is not None before returning
|
| 247 |
if state_dict is None:
|
| 248 |
-
|
|
|
|
|
|
|
| 249 |
return state_dict, video_path
|
| 250 |
|
| 251 |
|
| 252 |
-
@spaces.GPU(duration=120)
|
| 253 |
def extract_glb(
|
| 254 |
-
state_dict: dict,
|
| 255 |
mesh_simplify: float,
|
| 256 |
texture_size: int,
|
| 257 |
req: gr.Request,
|
|
@@ -260,31 +247,27 @@ def extract_glb(
|
|
| 260 |
Extracts a GLB file from the provided 3D model state dictionary.
|
| 261 |
"""
|
| 262 |
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
|
| 276 |
-
|
| 277 |
-
try:
|
| 278 |
gs, mesh = unpack_state(state_dict)
|
| 279 |
-
except Exception as e:
|
| 280 |
-
print(f"❌ [extract_glb] unpack_state error: {e}", file=sys.stderr)
|
| 281 |
-
traceback.print_exc()
|
| 282 |
-
raise gr.Error(f"Failed to unpack state during GLB extraction: {e}")
|
| 283 |
|
| 284 |
-
|
| 285 |
-
try:
|
| 286 |
print("[extract_glb] Converting to GLB...")
|
| 287 |
-
# Ensure parameters have correct types
|
| 288 |
simplify_factor = float(mesh_simplify)
|
| 289 |
tex_size = int(texture_size)
|
| 290 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=simplify_factor, texture_size=tex_size, verbose=True)
|
|
@@ -292,77 +275,77 @@ def extract_glb(
|
|
| 292 |
print(f"[extract_glb] Exporting GLB to: {glb_path}")
|
| 293 |
glb.export(glb_path)
|
| 294 |
print("[extract_glb] GLB exported successfully.")
|
|
|
|
| 295 |
except Exception as e:
|
| 296 |
-
print(f"❌ [extract_glb] GLB
|
| 297 |
traceback.print_exc()
|
| 298 |
-
raise gr.Error(f"Failed to extract GLB: {e}")
|
| 299 |
|
| 300 |
# --- Cleanup and Return ---
|
| 301 |
if torch.cuda.is_available():
|
| 302 |
torch.cuda.empty_cache()
|
| 303 |
print("[extract_glb] Cleared CUDA cache.")
|
| 304 |
|
| 305 |
-
# Return path twice for both Model3D and DownloadButton components
|
| 306 |
print("[extract_glb] Returning GLB path.")
|
| 307 |
-
|
|
|
|
|
|
|
| 308 |
return glb_path, glb_path
|
| 309 |
|
| 310 |
|
| 311 |
@spaces.GPU
|
| 312 |
def extract_gaussian(
|
| 313 |
-
state_dict: dict,
|
| 314 |
req: gr.Request
|
| 315 |
) -> Tuple[str, str]:
|
| 316 |
"""
|
| 317 |
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
|
| 318 |
"""
|
| 319 |
print("[extract_gaussian] Received request.")
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
gs, _ = unpack_state(state_dict) # Only need Gaussian part
|
| 336 |
-
except Exception as e:
|
| 337 |
-
print(f"❌ [extract_gaussian] unpack_state error: {e}", file=sys.stderr)
|
| 338 |
-
traceback.print_exc()
|
| 339 |
-
raise gr.Error(f"Failed to unpack state during Gaussian extraction: {e}")
|
| 340 |
|
| 341 |
-
|
| 342 |
-
try:
|
| 343 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 344 |
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
|
| 345 |
gs.save_ply(gaussian_path)
|
| 346 |
print("[extract_gaussian] PLY saved successfully.")
|
|
|
|
| 347 |
except Exception as e:
|
| 348 |
-
print(f"❌ [extract_gaussian]
|
| 349 |
traceback.print_exc()
|
| 350 |
-
raise gr.Error(f"Failed to extract Gaussian PLY: {e}")
|
| 351 |
|
| 352 |
# --- Cleanup and Return ---
|
| 353 |
if torch.cuda.is_available():
|
| 354 |
torch.cuda.empty_cache()
|
| 355 |
print("[extract_gaussian] Cleared CUDA cache.")
|
| 356 |
|
| 357 |
-
# Return path twice for both Model3D and DownloadButton components
|
| 358 |
print("[extract_gaussian] Returning PLY path.")
|
| 359 |
-
|
|
|
|
|
|
|
| 360 |
return gaussian_path, gaussian_path
|
| 361 |
|
| 362 |
|
| 363 |
# --- Gradio UI Definition ---
|
| 364 |
print("Setting up Gradio Blocks interface...")
|
| 365 |
-
# Define the interface layout
|
| 366 |
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
| 367 |
gr.Markdown("""
|
| 368 |
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
|
@@ -373,7 +356,6 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
| 373 |
""")
|
| 374 |
|
| 375 |
# --- State Buffer ---
|
| 376 |
-
# This hidden component holds the dictionary linking generation and extraction.
|
| 377 |
output_buf = gr.State()
|
| 378 |
|
| 379 |
with gr.Row():
|
|
@@ -394,7 +376,7 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
| 394 |
|
| 395 |
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
|
| 396 |
|
| 397 |
-
with gr.Accordion(label="GLB Extraction Settings", open=True):
|
| 398 |
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
|
| 399 |
texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")
|
| 400 |
|
|
@@ -408,7 +390,7 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
| 408 |
with gr.Column(scale=1): # Output column
|
| 409 |
# Video component remains for layout but won't show anything in this debug version
|
| 410 |
video_output = gr.Video(label="Generated 3D Preview (DISABLED FOR DEBUG)", autoplay=False, loop=False, value=None, height=350)
|
| 411 |
-
model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0])
|
| 412 |
|
| 413 |
with gr.Row():
|
| 414 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
|
@@ -418,8 +400,10 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
| 418 |
print("Defining Gradio event handlers...")
|
| 419 |
|
| 420 |
# Handle session start/end
|
|
|
|
| 421 |
demo.load(start_session, inputs=None, outputs=None)
|
| 422 |
-
demo.unload(
|
|
|
|
| 423 |
|
| 424 |
# --- Generate Button Click Flow ---
|
| 425 |
generate_event = generate_btn.click(
|
|
@@ -430,18 +414,16 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
| 430 |
).then(
|
| 431 |
text_to_3d,
|
| 432 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
| 433 |
-
#
|
| 434 |
-
outputs=[output_buf, video_output],
|
| 435 |
api_name="text_to_3d"
|
| 436 |
).then(
|
| 437 |
-
# Function to update button interactivity after generation attempt
|
| 438 |
lambda: (
|
| 439 |
gr.Button(interactive=True),
|
| 440 |
gr.Button(interactive=True),
|
| 441 |
gr.DownloadButton(interactive=False),
|
| 442 |
gr.DownloadButton(interactive=False)
|
| 443 |
),
|
| 444 |
-
inputs=None,
|
| 445 |
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
|
| 446 |
)
|
| 447 |
|
|
@@ -475,7 +457,6 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
| 475 |
inputs=None,
|
| 476 |
outputs=[download_glb, download_gs]
|
| 477 |
)
|
| 478 |
-
# Also disable buttons if the (currently disabled) video output is cleared
|
| 479 |
video_output.clear(
|
| 480 |
lambda: (
|
| 481 |
gr.Button(interactive=False),
|
|
@@ -491,18 +472,15 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
| 491 |
|
| 492 |
|
| 493 |
# --- Launch the Gradio app ---
|
| 494 |
-
# Main execution block
|
| 495 |
if __name__ == "__main__":
|
| 496 |
print("Loading Trellis pipeline...")
|
| 497 |
pipeline_loaded = False
|
|
|
|
| 498 |
try:
|
| 499 |
-
# Ensure model/variant matches requirements, use revision if needed
|
| 500 |
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
| 501 |
"JeffreyXiang/TRELLIS-text-xlarge",
|
| 502 |
-
|
| 503 |
-
torch_dtype=torch.float16 # Use float16 if GPU supports it for less memory
|
| 504 |
)
|
| 505 |
-
# Move to GPU if available
|
| 506 |
if torch.cuda.is_available():
|
| 507 |
pipeline = pipeline.to("cuda")
|
| 508 |
print("✅ Trellis pipeline loaded successfully to GPU.")
|
|
@@ -513,23 +491,20 @@ if __name__ == "__main__":
|
|
| 513 |
except Exception as e:
|
| 514 |
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
|
| 515 |
traceback.print_exc()
|
| 516 |
-
# Exit if pipeline is critical for the app to run
|
| 517 |
print("❌ Exiting due to pipeline load failure.")
|
| 518 |
-
sys.exit(1)
|
| 519 |
|
| 520 |
if pipeline_loaded:
|
| 521 |
print("Launching Gradio demo...")
|
| 522 |
-
#
|
| 523 |
-
# Set server_name="0.0.0.0" to allow access from local network IP
|
| 524 |
-
# Increased concurrency_limit and timeout for queue might help
|
| 525 |
demo.queue(
|
| 526 |
-
# default_concurrency_limit=
|
| 527 |
-
#
|
| 528 |
).launch(
|
| 529 |
-
# server_name="0.0.0.0", #
|
| 530 |
-
# share=False, # Set
|
| 531 |
-
debug=True, # Enable Gradio debug
|
| 532 |
-
# prevent_thread_lock=True #
|
| 533 |
)
|
| 534 |
print("Gradio demo launched.")
|
| 535 |
else:
|
|
|
|
| 1 |
+
# Version: 1.1.3 - API State Fix + DEBUG (Video Disabled) + unload() Fix (2025-05-04)
|
| 2 |
# Changes:
|
| 3 |
+
# - FIXED TypeError in demo.unload() by removing incorrect 'inputs'/'outputs' arguments.
|
| 4 |
# - ENSURED `import spaces` is present for the @spaces.GPU decorator.
|
| 5 |
# - TEMPORARY DEBUGGING STEP: Commented out video rendering in `text_to_3d`
|
| 6 |
# and return None for video_path to isolate the "Session not found" error.
|
| 7 |
+
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state`.
|
| 8 |
+
# - Modified `extract_glb`/`extract_gaussian` to accept `state_dict: dict`.
|
| 9 |
+
# - Kept Gradio UI bindings using `output_buf`.
|
|
|
|
|
|
|
|
|
|
| 10 |
# - Added minor safety checks and logging.
|
| 11 |
|
| 12 |
import gradio as gr
|
|
|
|
| 15 |
import os
|
| 16 |
import shutil
|
| 17 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
|
|
|
|
|
|
| 18 |
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original
|
| 19 |
|
| 20 |
from typing import *
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
MAX_SEED = np.iinfo(np.int32).max
|
| 34 |
+
# Use standard /tmp directory which is usually available in container environments
|
| 35 |
+
TMP_DIR = '/tmp/gradio_sessions'
|
|
|
|
|
|
|
| 36 |
print(f"Using temporary directory: {TMP_DIR}")
|
| 37 |
+
# Ensure the base temp directory exists
|
| 38 |
+
try:
|
| 39 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
| 40 |
+
except OSError as e:
|
| 41 |
+
print(f"Warning: Could not create base temp directory {TMP_DIR}: {e}", file=sys.stderr)
|
| 42 |
+
# Potentially fall back or exit if temp dir is critical
|
| 43 |
+
TMP_DIR = '.' # Fallback to current directory (less ideal)
|
| 44 |
+
print(f"Warning: Falling back to use current directory for temp files: {os.path.abspath(TMP_DIR)}")
|
| 45 |
|
| 46 |
|
| 47 |
def start_session(req: gr.Request):
|
| 48 |
"""Creates a temporary directory for the user session."""
|
| 49 |
+
user_dir = None # Initialize
|
| 50 |
try:
|
| 51 |
session_hash = req.session_hash
|
| 52 |
if not session_hash:
|
|
|
|
| 53 |
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
|
| 54 |
print(f"Warning: No session_hash in request, using temporary ID: {session_hash}")
|
| 55 |
|
| 56 |
+
# Ensure TMP_DIR exists before joining path
|
| 57 |
+
if not os.path.exists(TMP_DIR):
|
| 58 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
| 59 |
+
|
| 60 |
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
| 61 |
os.makedirs(user_dir, exist_ok=True)
|
| 62 |
+
print(f"Started session, ensured directory exists: {user_dir}")
|
| 63 |
except Exception as e:
|
| 64 |
+
print(f"Error in start_session creating directory '{user_dir}': {e}", file=sys.stderr)
|
| 65 |
+
traceback.print_exc()
|
| 66 |
|
| 67 |
|
| 68 |
def end_session(req: gr.Request):
|
| 69 |
"""Removes the temporary directory for the user session."""
|
| 70 |
+
user_dir = None # Initialize
|
| 71 |
try:
|
| 72 |
session_hash = req.session_hash
|
| 73 |
if not session_hash:
|
|
|
|
| 75 |
return
|
| 76 |
|
| 77 |
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
| 78 |
+
if os.path.exists(user_dir) and os.path.isdir(user_dir): # Extra check if it's a directory
|
| 79 |
try:
|
| 80 |
shutil.rmtree(user_dir)
|
| 81 |
print(f"Ended session, removed directory: {user_dir}")
|
| 82 |
except OSError as e:
|
| 83 |
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
|
| 84 |
else:
|
| 85 |
+
print(f"Ended session, directory not found or not a directory: {user_dir}")
|
| 86 |
except Exception as e:
|
| 87 |
+
print(f"Error in end_session cleaning directory '{user_dir}': {e}", file=sys.stderr)
|
| 88 |
|
| 89 |
|
| 90 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
|
|
| 93 |
try:
|
| 94 |
packed_data = {
|
| 95 |
'gaussian': {
|
| 96 |
+
**{k: v for k, v in gs.init_params.items()},
|
| 97 |
'_xyz': gs._xyz.detach().cpu().numpy(),
|
| 98 |
'_features_dc': gs._features_dc.detach().cpu().numpy(),
|
| 99 |
'_scaling': gs._scaling.detach().cpu().numpy(),
|
|
|
|
| 110 |
except Exception as e:
|
| 111 |
print(f"Error during pack_state: {e}", file=sys.stderr)
|
| 112 |
traceback.print_exc()
|
| 113 |
+
raise
|
| 114 |
|
| 115 |
|
| 116 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
|
|
|
| 120 |
if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
|
| 121 |
raise ValueError("Invalid state_dict structure passed to unpack_state.")
|
| 122 |
|
|
|
|
| 123 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 124 |
print(f"[unpack_state] Using device: {device}")
|
| 125 |
|
| 126 |
gauss_data = state_dict['gaussian']
|
| 127 |
mesh_data = state_dict['mesh']
|
| 128 |
|
|
|
|
| 129 |
gs = Gaussian(
|
| 130 |
+
aabb=gauss_data.get('aabb'),
|
| 131 |
sh_degree=gauss_data.get('sh_degree'),
|
| 132 |
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
|
| 133 |
scaling_bias=gauss_data.get('scaling_bias'),
|
| 134 |
opacity_bias=gauss_data.get('opacity_bias'),
|
| 135 |
scaling_activation=gauss_data.get('scaling_activation'),
|
| 136 |
)
|
|
|
|
| 137 |
gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
|
| 138 |
gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
|
| 139 |
gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
|
|
|
|
| 141 |
gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
|
| 142 |
print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")
|
| 143 |
|
|
|
|
| 144 |
mesh = edict(
|
| 145 |
vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
|
| 146 |
+
faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64),
|
| 147 |
)
|
| 148 |
print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")
|
| 149 |
|
|
|
|
| 151 |
except Exception as e:
|
| 152 |
print(f"Error during unpack_state: {e}", file=sys.stderr)
|
| 153 |
traceback.print_exc()
|
| 154 |
+
raise
|
| 155 |
|
| 156 |
|
| 157 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 158 |
"""Gets a seed value, randomizing if requested."""
|
| 159 |
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 160 |
print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
|
| 161 |
+
return int(new_seed)
|
| 162 |
|
| 163 |
|
| 164 |
@spaces.GPU
|
|
|
|
| 170 |
slat_guidance_strength: float,
|
| 171 |
slat_sampling_steps: int,
|
| 172 |
req: gr.Request,
|
| 173 |
+
) -> Tuple[dict, Optional[str]]:
|
| 174 |
"""
|
| 175 |
Generates a 3D model (Gaussian and Mesh) from text and returns a
|
| 176 |
serializable state dictionary and potentially a video preview path.
|
| 177 |
>>> TEMPORARILY DISABLED VIDEO RENDERING FOR DEBUGGING <<<
|
| 178 |
"""
|
| 179 |
print(f"[text_to_3d - DEBUG MODE] Received prompt: '{prompt}', Seed: {seed}")
|
| 180 |
+
user_dir = None # Initialize
|
| 181 |
+
state_dict = None # Initialize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
try:
|
| 183 |
+
session_hash = req.session_hash
|
| 184 |
+
if not session_hash:
|
| 185 |
+
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
|
| 186 |
+
print(f"Warning: No session_hash in text_to_3d request, using temporary ID: {session_hash}")
|
| 187 |
+
|
| 188 |
+
# Ensure user directory exists
|
| 189 |
+
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
| 190 |
+
os.makedirs(user_dir, exist_ok=True)
|
| 191 |
+
print(f"[text_to_3d - DEBUG MODE] User directory: {user_dir}")
|
| 192 |
+
|
| 193 |
+
# --- Generation Pipeline ---
|
| 194 |
print("[text_to_3d - DEBUG MODE] Running Trellis pipeline...")
|
|
|
|
| 195 |
outputs = pipeline.run(
|
| 196 |
prompt=prompt,
|
| 197 |
seed=seed,
|
| 198 |
+
formats=["gaussian", "mesh"],
|
| 199 |
sparse_structure_sampler_params={
|
| 200 |
+
"steps": int(ss_sampling_steps),
|
| 201 |
"cfg_strength": float(ss_guidance_strength),
|
| 202 |
},
|
| 203 |
slat_sampler_params={
|
| 204 |
+
"steps": int(slat_sampling_steps),
|
| 205 |
"cfg_strength": float(slat_guidance_strength),
|
| 206 |
},
|
|
|
|
| 207 |
)
|
| 208 |
print("[text_to_3d - DEBUG MODE] Pipeline run completed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
# --- Create Serializable State Dictionary ---
|
|
|
|
| 211 |
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 212 |
+
|
| 213 |
except Exception as e:
|
| 214 |
+
print(f"❌ [text_to_3d - DEBUG MODE] Error during generation or packing: {e}", file=sys.stderr)
|
| 215 |
traceback.print_exc()
|
| 216 |
+
# Raise a Gradio error to send failure message back to client if possible
|
| 217 |
+
raise gr.Error(f"Core generation failed: {e}")
|
| 218 |
|
| 219 |
# --- Render Video Preview (TEMPORARILY DISABLED FOR DEBUGGING) ---
|
| 220 |
+
video_path = None
|
| 221 |
print("[text_to_3d - DEBUG MODE] Skipping video rendering.")
|
| 222 |
+
# --- Original Video Code Block (Keep commented) ---
|
| 223 |
+
# ... (video code commented out) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
# --- Cleanup and Return ---
|
| 226 |
if torch.cuda.is_available():
|
|
|
|
| 229 |
|
| 230 |
# --- Return Serializable Dictionary and None Video Path ---
|
| 231 |
print("[text_to_3d - DEBUG MODE] Returning state dictionary and None video path.")
|
|
|
|
| 232 |
if state_dict is None:
|
| 233 |
+
# This case should ideally be caught by the exception handling above
|
| 234 |
+
print("Error: state_dict is None before return, generation likely failed.", file=sys.stderr)
|
| 235 |
+
raise gr.Error("State dictionary creation failed.")
|
| 236 |
return state_dict, video_path
|
| 237 |
|
| 238 |
|
| 239 |
+
@spaces.GPU(duration=120)
|
| 240 |
def extract_glb(
|
| 241 |
+
state_dict: dict,
|
| 242 |
mesh_simplify: float,
|
| 243 |
texture_size: int,
|
| 244 |
req: gr.Request,
|
|
|
|
| 247 |
Extracts a GLB file from the provided 3D model state dictionary.
|
| 248 |
"""
|
| 249 |
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
|
| 250 |
+
user_dir = None # Initialize
|
| 251 |
+
glb_path = None # Initialize
|
| 252 |
+
try:
|
| 253 |
+
session_hash = req.session_hash
|
| 254 |
+
if not session_hash:
|
| 255 |
+
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
|
| 256 |
+
print(f"Warning: No session_hash in extract_glb request, using temporary ID: {session_hash}")
|
| 257 |
|
| 258 |
+
if not isinstance(state_dict, dict):
|
| 259 |
+
print("❌ [extract_glb] Error: Invalid state_dict received (not a dictionary).")
|
| 260 |
+
raise gr.Error("Invalid state data received. Please generate the model first.")
|
| 261 |
|
| 262 |
+
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
| 263 |
+
os.makedirs(user_dir, exist_ok=True)
|
| 264 |
+
print(f"[extract_glb] User directory: {user_dir}")
|
| 265 |
|
| 266 |
+
# --- Unpack state from the dictionary ---
|
|
|
|
| 267 |
gs, mesh = unpack_state(state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
+
# --- Postprocessing and Export ---
|
|
|
|
| 270 |
print("[extract_glb] Converting to GLB...")
|
|
|
|
| 271 |
simplify_factor = float(mesh_simplify)
|
| 272 |
tex_size = int(texture_size)
|
| 273 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=simplify_factor, texture_size=tex_size, verbose=True)
|
|
|
|
| 275 |
print(f"[extract_glb] Exporting GLB to: {glb_path}")
|
| 276 |
glb.export(glb_path)
|
| 277 |
print("[extract_glb] GLB exported successfully.")
|
| 278 |
+
|
| 279 |
except Exception as e:
|
| 280 |
+
print(f"❌ [extract_glb] Error during GLB extraction: {e}", file=sys.stderr)
|
| 281 |
traceback.print_exc()
|
| 282 |
+
raise gr.Error(f"Failed to extract GLB: {e}") # Propagate error
|
| 283 |
|
| 284 |
# --- Cleanup and Return ---
|
| 285 |
if torch.cuda.is_available():
|
| 286 |
torch.cuda.empty_cache()
|
| 287 |
print("[extract_glb] Cleared CUDA cache.")
|
| 288 |
|
|
|
|
| 289 |
print("[extract_glb] Returning GLB path.")
|
| 290 |
+
if glb_path is None:
|
| 291 |
+
print("Error: glb_path is None before return, extraction likely failed.", file=sys.stderr)
|
| 292 |
+
raise gr.Error("GLB path generation failed.")
|
| 293 |
return glb_path, glb_path
|
| 294 |
|
| 295 |
|
| 296 |
@spaces.GPU
|
| 297 |
def extract_gaussian(
|
| 298 |
+
state_dict: dict,
|
| 299 |
req: gr.Request
|
| 300 |
) -> Tuple[str, str]:
|
| 301 |
"""
|
| 302 |
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
|
| 303 |
"""
|
| 304 |
print("[extract_gaussian] Received request.")
|
| 305 |
+
user_dir = None # Initialize
|
| 306 |
+
gaussian_path = None # Initialize
|
| 307 |
+
try:
|
| 308 |
+
session_hash = req.session_hash
|
| 309 |
+
if not session_hash:
|
| 310 |
+
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
|
| 311 |
+
print(f"Warning: No session_hash in extract_gaussian request, using temporary ID: {session_hash}")
|
| 312 |
|
| 313 |
+
if not isinstance(state_dict, dict):
|
| 314 |
+
print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
|
| 315 |
+
raise gr.Error("Invalid state data received. Please generate the model first.")
|
| 316 |
|
| 317 |
+
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
| 318 |
+
os.makedirs(user_dir, exist_ok=True)
|
| 319 |
+
print(f"[extract_gaussian] User directory: {user_dir}")
|
| 320 |
|
| 321 |
+
# --- Unpack state from the dictionary ---
|
| 322 |
+
gs, _ = unpack_state(state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
+
# --- Export PLY ---
|
|
|
|
| 325 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 326 |
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
|
| 327 |
gs.save_ply(gaussian_path)
|
| 328 |
print("[extract_gaussian] PLY saved successfully.")
|
| 329 |
+
|
| 330 |
except Exception as e:
|
| 331 |
+
print(f"❌ [extract_gaussian] Error during Gaussian extraction: {e}", file=sys.stderr)
|
| 332 |
traceback.print_exc()
|
| 333 |
+
raise gr.Error(f"Failed to extract Gaussian PLY: {e}") # Propagate error
|
| 334 |
|
| 335 |
# --- Cleanup and Return ---
|
| 336 |
if torch.cuda.is_available():
|
| 337 |
torch.cuda.empty_cache()
|
| 338 |
print("[extract_gaussian] Cleared CUDA cache.")
|
| 339 |
|
|
|
|
| 340 |
print("[extract_gaussian] Returning PLY path.")
|
| 341 |
+
if gaussian_path is None:
|
| 342 |
+
print("Error: gaussian_path is None before return, extraction likely failed.", file=sys.stderr)
|
| 343 |
+
raise gr.Error("Gaussian PLY path generation failed.")
|
| 344 |
return gaussian_path, gaussian_path
|
| 345 |
|
| 346 |
|
| 347 |
# --- Gradio UI Definition ---
|
| 348 |
print("Setting up Gradio Blocks interface...")
|
|
|
|
| 349 |
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
| 350 |
gr.Markdown("""
|
| 351 |
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
|
|
|
| 356 |
""")
|
| 357 |
|
| 358 |
# --- State Buffer ---
|
|
|
|
| 359 |
output_buf = gr.State()
|
| 360 |
|
| 361 |
with gr.Row():
|
|
|
|
| 376 |
|
| 377 |
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
|
| 378 |
|
| 379 |
+
with gr.Accordion(label="GLB Extraction Settings", open=True):
|
| 380 |
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
|
| 381 |
texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")
|
| 382 |
|
|
|
|
| 390 |
with gr.Column(scale=1): # Output column
|
| 391 |
# Video component remains for layout but won't show anything in this debug version
|
| 392 |
video_output = gr.Video(label="Generated 3D Preview (DISABLED FOR DEBUG)", autoplay=False, loop=False, value=None, height=350)
|
| 393 |
+
model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0])
|
| 394 |
|
| 395 |
with gr.Row():
|
| 396 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
|
|
|
| 400 |
print("Defining Gradio event handlers...")
|
| 401 |
|
| 402 |
# Handle session start/end
|
| 403 |
+
# demo.load() is valid with inputs=None, outputs=None (though default)
|
| 404 |
demo.load(start_session, inputs=None, outputs=None)
|
| 405 |
+
# >>> FIX: demo.unload() does NOT take inputs/outputs arguments <<<
|
| 406 |
+
demo.unload(end_session) # Removed inputs/outputs kwargs
|
| 407 |
|
| 408 |
# --- Generate Button Click Flow ---
|
| 409 |
generate_event = generate_btn.click(
|
|
|
|
| 414 |
).then(
|
| 415 |
text_to_3d,
|
| 416 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
| 417 |
+
outputs=[output_buf, video_output], # state_dict -> output_buf, None -> video_output
|
|
|
|
| 418 |
api_name="text_to_3d"
|
| 419 |
).then(
|
|
|
|
| 420 |
lambda: (
|
| 421 |
gr.Button(interactive=True),
|
| 422 |
gr.Button(interactive=True),
|
| 423 |
gr.DownloadButton(interactive=False),
|
| 424 |
gr.DownloadButton(interactive=False)
|
| 425 |
),
|
| 426 |
+
inputs=None,
|
| 427 |
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
|
| 428 |
)
|
| 429 |
|
|
|
|
| 457 |
inputs=None,
|
| 458 |
outputs=[download_glb, download_gs]
|
| 459 |
)
|
|
|
|
| 460 |
video_output.clear(
|
| 461 |
lambda: (
|
| 462 |
gr.Button(interactive=False),
|
|
|
|
| 472 |
|
| 473 |
|
| 474 |
# --- Launch the Gradio app ---
|
|
|
|
| 475 |
if __name__ == "__main__":
|
| 476 |
print("Loading Trellis pipeline...")
|
| 477 |
pipeline_loaded = False
|
| 478 |
+
pipeline = None # Initialize
|
| 479 |
try:
|
|
|
|
| 480 |
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
| 481 |
"JeffreyXiang/TRELLIS-text-xlarge",
|
| 482 |
+
torch_dtype=torch.float16 # Use float16 if GPU supports it
|
|
|
|
| 483 |
)
|
|
|
|
| 484 |
if torch.cuda.is_available():
|
| 485 |
pipeline = pipeline.to("cuda")
|
| 486 |
print("✅ Trellis pipeline loaded successfully to GPU.")
|
|
|
|
| 491 |
except Exception as e:
|
| 492 |
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
|
| 493 |
traceback.print_exc()
|
|
|
|
| 494 |
print("❌ Exiting due to pipeline load failure.")
|
| 495 |
+
sys.exit(1)
|
| 496 |
|
| 497 |
if pipeline_loaded:
|
| 498 |
print("Launching Gradio demo...")
|
| 499 |
+
# Consider increasing queue timeout if tasks are long
|
|
|
|
|
|
|
| 500 |
demo.queue(
|
| 501 |
+
# default_concurrency_limit=2, # Limit concurrency if resource issues suspected
|
| 502 |
+
# status_update_rate='auto'
|
| 503 |
).launch(
|
| 504 |
+
# server_name="0.0.0.0", # Allows access from local network
|
| 505 |
+
# share=False, # Set True for public link (careful with resources)
|
| 506 |
+
debug=True, # Enable Gradio/FastAPI debug logs
|
| 507 |
+
# prevent_thread_lock=True # Might help sometimes
|
| 508 |
)
|
| 509 |
print("Gradio demo launched.")
|
| 510 |
else:
|