Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
-
# Version: 1.1.
|
| 2 |
-
# Applied:
|
| 3 |
# - Removed unsupported inputs/outputs kwargs on demo.load/unload
|
| 4 |
# - Converted NumPy arrays to lists in pack_state for JSON safety
|
| 5 |
# - Fixed indentation in Blocks event-handlers
|
| 6 |
# - Verified clear() callbacks use only callback + outputs
|
| 7 |
-
# - Removed `torch_dtype` arg from
|
| 8 |
-
# -
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
import spaces
|
|
@@ -25,10 +25,26 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
| 25 |
import traceback
|
| 26 |
import sys
|
| 27 |
|
|
|
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
| 29 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 30 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def start_session(req: gr.Request):
|
| 34 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
@@ -50,10 +66,9 @@ def end_session(req: gr.Request):
|
|
| 50 |
|
| 51 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 52 |
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary."""
|
| 53 |
-
|
| 54 |
'gaussian': {
|
| 55 |
**{k: v for k, v in gs.init_params.items()},
|
| 56 |
-
# FIX: convert arrays to lists for JSON
|
| 57 |
'_xyz': gs._xyz.detach().cpu().numpy().tolist(),
|
| 58 |
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(),
|
| 59 |
'_scaling': gs._scaling.detach().cpu().numpy().tolist(),
|
|
@@ -65,178 +80,128 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
| 65 |
'faces': mesh.faces.detach().cpu().numpy().tolist(),
|
| 66 |
},
|
| 67 |
}
|
| 68 |
-
return packed_data
|
| 69 |
|
| 70 |
|
| 71 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
| 72 |
-
print("[unpack_state] Unpacking state from dictionary... ")
|
| 73 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 74 |
-
|
| 75 |
-
|
| 76 |
gs = Gaussian(
|
| 77 |
-
aabb=
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
opacity_bias=gauss_data.get('opacity_bias'),
|
| 82 |
-
scaling_activation=gauss_data.get('scaling_activation'),
|
| 83 |
)
|
| 84 |
-
gs._xyz = torch.tensor(np.array(
|
| 85 |
-
gs._features_dc = torch.tensor(np.array(
|
| 86 |
-
gs._scaling = torch.tensor(np.array(
|
| 87 |
-
gs._rotation = torch.tensor(np.array(
|
| 88 |
-
gs._opacity = torch.tensor(np.array(
|
| 89 |
mesh = edict(
|
| 90 |
-
vertices=torch.tensor(np.array(
|
| 91 |
-
faces=torch.tensor(np.array(
|
| 92 |
)
|
| 93 |
return gs, mesh
|
| 94 |
|
| 95 |
|
| 96 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 97 |
-
|
| 98 |
-
return int(new_seed)
|
| 99 |
|
| 100 |
@spaces.GPU
|
| 101 |
def text_to_3d(
|
| 102 |
-
prompt: str,
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
slat_guidance_strength: float,
|
| 107 |
-
slat_sampling_steps: int,
|
| 108 |
-
req: gr.Request,
|
| 109 |
) -> Tuple[dict, str]:
|
| 110 |
-
|
| 111 |
-
prompt,
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
slat_sampler_params={"steps": int(slat_sampling_steps), "cfg_strength": float(slat_guidance_strength)},
|
| 116 |
)
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
os.
|
| 123 |
-
video_path = os.path.join(user_dir, 'sample.mp4')
|
| 124 |
-
imageio.mimsave(video_path, video_combined, fps=15, quality=8)
|
| 125 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 126 |
-
return
|
| 127 |
|
| 128 |
@spaces.GPU(duration=120)
|
| 129 |
-
def extract_glb(
|
| 130 |
-
state_dict: dict,
|
| 131 |
-
mesh_simplify: float,
|
| 132 |
-
texture_size: int,
|
| 133 |
-
req: gr.Request,
|
| 134 |
-
) -> Tuple[str, str]:
|
| 135 |
gs, mesh = unpack_state(state_dict)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 140 |
-
glb.export(glb_path)
|
| 141 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 142 |
-
return
|
| 143 |
|
| 144 |
@spaces.GPU
|
| 145 |
-
def extract_gaussian(
|
| 146 |
-
state_dict: dict,
|
| 147 |
-
req: gr.Request
|
| 148 |
-
) -> Tuple[str, str]:
|
| 149 |
gs, _ = unpack_state(state_dict)
|
| 150 |
-
|
| 151 |
-
os.
|
| 152 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 153 |
-
gs.save_ply(gaussian_path)
|
| 154 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 155 |
-
return
|
| 156 |
|
| 157 |
-
# --- Gradio UI
|
| 158 |
-
with gr.Blocks(delete_cache=(600,
|
| 159 |
gr.Markdown("""
|
| 160 |
-
# Text to 3D Asset with
|
| 161 |
""")
|
| 162 |
-
|
| 163 |
-
# State buffer
|
| 164 |
output_buf = gr.State()
|
| 165 |
-
|
| 166 |
with gr.Row():
|
| 167 |
with gr.Column(scale=1):
|
| 168 |
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
|
| 169 |
-
with gr.Accordion(
|
| 170 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 171 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 172 |
-
gr.Markdown("
|
| 173 |
-
ss_guidance_strength = gr.Slider(0.0,
|
| 174 |
-
ss_sampling_steps = gr.Slider(10,
|
| 175 |
-
gr.Markdown("
|
| 176 |
-
slat_guidance_strength = gr.Slider(0.0,
|
| 177 |
-
slat_sampling_steps = gr.Slider(10,
|
| 178 |
-
generate_btn = gr.Button("Generate 3D Preview"
|
| 179 |
-
with gr.Accordion(
|
| 180 |
-
mesh_simplify = gr.Slider(0.9,
|
| 181 |
-
texture_size = gr.Slider(512,
|
| 182 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 183 |
-
extract_gs_btn = gr.Button("Extract Gaussian
|
| 184 |
-
download_glb = gr.DownloadButton(
|
| 185 |
-
download_gs = gr.DownloadButton(
|
| 186 |
with gr.Column(scale=1):
|
| 187 |
-
video_output = gr.Video(
|
| 188 |
-
model_output = gr.Model3D(
|
| 189 |
|
| 190 |
-
# ---
|
| 191 |
-
demo.load(start_session)
|
| 192 |
-
demo.unload(end_session)
|
| 193 |
|
| 194 |
-
# Align indentation to one level under Blocks
|
| 195 |
generate_event = generate_btn.click(
|
| 196 |
get_seed,
|
| 197 |
-
inputs=[randomize_seed, seed]
|
| 198 |
-
outputs=[seed],
|
| 199 |
).then(
|
| 200 |
text_to_3d,
|
| 201 |
-
inputs=[text_prompt,
|
| 202 |
-
outputs=[output_buf,
|
| 203 |
-
).then(
|
| 204 |
-
lambda: (extract_glb_btn.update(interactive=True), extract_gs_btn.update(interactive=True)),
|
| 205 |
-
outputs=[extract_glb_btn, extract_gs_btn],
|
| 206 |
-
)
|
| 207 |
|
| 208 |
-
|
| 209 |
extract_glb,
|
| 210 |
-
inputs=[output_buf,
|
| 211 |
-
outputs=[model_output,
|
| 212 |
-
).then(
|
| 213 |
-
lambda: download_glb.update(interactive=True),
|
| 214 |
-
outputs=[download_glb],
|
| 215 |
-
)
|
| 216 |
|
| 217 |
-
|
| 218 |
extract_gaussian,
|
| 219 |
-
inputs=[output_buf],
|
| 220 |
-
|
| 221 |
-
).then(
|
| 222 |
-
lambda: download_gaussian.update(interactive=True),
|
| 223 |
-
outputs=[download_gs],
|
| 224 |
-
)
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
lambda: (download_glb.update(interactive=False), download_gs.update(interactive=False)),
|
| 229 |
-
outputs=[download_glb, download_gs],
|
| 230 |
-
)
|
| 231 |
-
video_output.clear(
|
| 232 |
-
lambda: (extract_glb_btn.update(interactive=False), extract_gs_btn.update(interactive=False), download_glb.update(interactive=False), download_gs.update(interactive=False)),
|
| 233 |
-
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
|
| 234 |
-
)
|
| 235 |
|
| 236 |
if __name__ == "__main__":
|
| 237 |
-
# Removed torch_dtype argument to match current API
|
| 238 |
-
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
| 239 |
-
"JeffreyXiang/TRELLIS-text-xlarge"
|
| 240 |
-
)
|
| 241 |
-
if torch.cuda.is_available(): pipeline = pipeline.to("cuda")
|
| 242 |
demo.queue().launch(debug=True)
|
|
|
|
| 1 |
+
# Version: 1.1.3 - Load pipeline at module level for Spaces environment
|
| 2 |
+
# Applied targeted fixes:
|
| 3 |
# - Removed unsupported inputs/outputs kwargs on demo.load/unload
|
| 4 |
# - Converted NumPy arrays to lists in pack_state for JSON safety
|
| 5 |
# - Fixed indentation in Blocks event-handlers
|
| 6 |
# - Verified clear() callbacks use only callback + outputs
|
| 7 |
+
# - Removed `torch_dtype` arg from from_pretrained
|
| 8 |
+
# - Moved pipeline initialization to module level so it's available in threads
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
import spaces
|
|
|
|
| 25 |
import traceback
|
| 26 |
import sys
|
| 27 |
|
| 28 |
+
# --- Global Config ---
|
| 29 |
MAX_SEED = np.iinfo(np.int32).max
|
| 30 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 31 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 32 |
|
| 33 |
+
# --- Initialize Trellis Pipeline at import time ---
|
| 34 |
+
print("[Startup] Loading Trellis pipeline...")
|
| 35 |
+
try:
|
| 36 |
+
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
| 37 |
+
"JeffreyXiang/TRELLIS-text-xlarge"
|
| 38 |
+
)
|
| 39 |
+
if torch.cuda.is_available():
|
| 40 |
+
pipeline = pipeline.to("cuda")
|
| 41 |
+
print("[Startup] Trellis pipeline loaded to GPU.")
|
| 42 |
+
else:
|
| 43 |
+
print("[Startup] Trellis pipeline loaded to CPU.")
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"❌ [Startup] Failed to load Trellis pipeline: {e}")
|
| 46 |
+
raise
|
| 47 |
+
|
| 48 |
|
| 49 |
def start_session(req: gr.Request):
|
| 50 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
| 66 |
|
| 67 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 68 |
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary."""
|
| 69 |
+
return {
|
| 70 |
'gaussian': {
|
| 71 |
**{k: v for k, v in gs.init_params.items()},
|
|
|
|
| 72 |
'_xyz': gs._xyz.detach().cpu().numpy().tolist(),
|
| 73 |
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(),
|
| 74 |
'_scaling': gs._scaling.detach().cpu().numpy().tolist(),
|
|
|
|
| 80 |
'faces': mesh.faces.detach().cpu().numpy().tolist(),
|
| 81 |
},
|
| 82 |
}
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
|
|
|
| 86 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 87 |
+
gd = state_dict['gaussian']
|
| 88 |
+
md = state_dict['mesh']
|
| 89 |
gs = Gaussian(
|
| 90 |
+
aabb=gd.get('aabb'), sh_degree=gd.get('sh_degree'),
|
| 91 |
+
mininum_kernel_size=gd.get('mininum_kernel_size'),
|
| 92 |
+
scaling_bias=gd.get('scaling_bias'), opacity_bias=gd.get('opacity_bias'),
|
| 93 |
+
scaling_activation=gd.get('scaling_activation')
|
|
|
|
|
|
|
| 94 |
)
|
| 95 |
+
gs._xyz = torch.tensor(np.array(gd['_xyz']), device=device, dtype=torch.float32)
|
| 96 |
+
gs._features_dc = torch.tensor(np.array(gd['_features_dc']), device=device, dtype=torch.float32)
|
| 97 |
+
gs._scaling = torch.tensor(np.array(gd['_scaling']), device=device, dtype=torch.float32)
|
| 98 |
+
gs._rotation = torch.tensor(np.array(gd['_rotation']), device=device, dtype=torch.float32)
|
| 99 |
+
gs._opacity = torch.tensor(np.array(gd['_opacity']), device=device, dtype=torch.float32)
|
| 100 |
mesh = edict(
|
| 101 |
+
vertices=torch.tensor(np.array(md['vertices']), device=device, dtype=torch.float32),
|
| 102 |
+
faces=torch.tensor(np.array(md['faces']), device=device, dtype=torch.int64),
|
| 103 |
)
|
| 104 |
return gs, mesh
|
| 105 |
|
| 106 |
|
| 107 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 108 |
+
return int(np.random.randint(0, MAX_SEED) if randomize_seed else seed)
|
|
|
|
| 109 |
|
| 110 |
@spaces.GPU
|
| 111 |
def text_to_3d(
|
| 112 |
+
prompt: str, seed: int,
|
| 113 |
+
ss_guidance_strength: float, ss_sampling_steps: int,
|
| 114 |
+
slat_guidance_strength: float, slat_sampling_steps: int,
|
| 115 |
+
req: gr.Request
|
|
|
|
|
|
|
|
|
|
| 116 |
) -> Tuple[dict, str]:
|
| 117 |
+
out = pipeline.run(
|
| 118 |
+
prompt, seed=seed,
|
| 119 |
+
formats=["gaussian","mesh"],
|
| 120 |
+
sparse_structure_sampler_params={"steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength},
|
| 121 |
+
slat_sampler_params={"steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength}
|
|
|
|
| 122 |
)
|
| 123 |
+
state = pack_state(out['gaussian'][0], out['mesh'][0])
|
| 124 |
+
vid_c = render_utils.render_video(out['gaussian'][0],num_frames=120)['color']
|
| 125 |
+
vid_n = render_utils.render_video(out['mesh'][0],num_frames=120)['normal']
|
| 126 |
+
vid = [np.concatenate([c.astype(np.uint8), n.astype(np.uint8)], axis=1) for c,n in zip(vid_c,vid_n)]
|
| 127 |
+
ud = os.path.join(TMP_DIR,str(req.session_hash)); os.makedirs(ud,exist_ok=True)
|
| 128 |
+
vp = os.path.join(ud,'sample.mp4'); imageio.mimsave(vp,vid,fps=15,quality=8)
|
|
|
|
|
|
|
| 129 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 130 |
+
return state, vp
|
| 131 |
|
| 132 |
@spaces.GPU(duration=120)
|
| 133 |
+
def extract_glb(state_dict: dict, mesh_simplify: float, texture_size: int, req: gr.Request):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
gs, mesh = unpack_state(state_dict)
|
| 135 |
+
ud = os.path.join(TMP_DIR, str(req.session_hash)); os.makedirs(ud, exist_ok=True)
|
| 136 |
+
glb = postprocessing_utils.to_glb(gs,mesh,simplify=mesh_simplify,texture_size=texture_size,verbose=True)
|
| 137 |
+
gp = os.path.join(ud,'sample.glb'); glb.export(gp)
|
|
|
|
|
|
|
| 138 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 139 |
+
return gp, gp
|
| 140 |
|
| 141 |
@spaces.GPU
|
| 142 |
+
def extract_gaussian(state_dict: dict, req: gr.Request):
|
|
|
|
|
|
|
|
|
|
| 143 |
gs, _ = unpack_state(state_dict)
|
| 144 |
+
ud = os.path.join(TMP_DIR, str(req.session_hash)); os.makedirs(ud, exist_ok=True)
|
| 145 |
+
pp = os.path.join(ud,'sample.ply'); gs.save_ply(pp)
|
|
|
|
|
|
|
| 146 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 147 |
+
return pp, pp
|
| 148 |
|
| 149 |
+
# --- Gradio UI ---
|
| 150 |
+
with gr.Blocks(delete_cache=(600,600), title="TRELLIS Text-to-3D") as demo:
|
| 151 |
gr.Markdown("""
|
| 152 |
+
# Text to 3D Asset with TRELLIS
|
| 153 |
""")
|
|
|
|
|
|
|
| 154 |
output_buf = gr.State()
|
|
|
|
| 155 |
with gr.Row():
|
| 156 |
with gr.Column(scale=1):
|
| 157 |
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
|
| 158 |
+
with gr.Accordion("Generation Settings", open=False):
|
| 159 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 160 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 161 |
+
gr.Markdown("--- Stage 1 ---")
|
| 162 |
+
ss_guidance_strength = gr.Slider(0.0,15.0,label="Guidance Strength",value=7.5,step=0.1)
|
| 163 |
+
ss_sampling_steps = gr.Slider(10,50,label="Steps",value=25,step=1)
|
| 164 |
+
gr.Markdown("--- Stage 2 ---")
|
| 165 |
+
slat_guidance_strength = gr.Slider(0.0,15.0,label="Guidance Strength",value=7.5,step=0.1)
|
| 166 |
+
slat_sampling_steps = gr.Slider(10,50,label="Steps",value=25,step=1)
|
| 167 |
+
generate_btn = gr.Button("Generate 3D Preview")
|
| 168 |
+
with gr.Accordion("GLB Extraction Settings", open=True):
|
| 169 |
+
mesh_simplify = gr.Slider(0.9,0.99,label="Simplify",value=0.95,step=0.01)
|
| 170 |
+
texture_size = gr.Slider(512,2048,label="Texture Size",value=1024,step=512)
|
| 171 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 172 |
+
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 173 |
+
download_glb = gr.DownloadButton("Download GLB", interactive=False)
|
| 174 |
+
download_gs = gr.DownloadButton("Download Gaussian", interactive=False)
|
| 175 |
with gr.Column(scale=1):
|
| 176 |
+
video_output = gr.Video(autoplay=True,loop=True)
|
| 177 |
+
model_output = gr.Model3D()
|
| 178 |
|
| 179 |
+
# --- Handlers ---
|
| 180 |
+
demo.load(start_session)
|
| 181 |
+
demo.unload(end_session)
|
| 182 |
|
|
|
|
| 183 |
generate_event = generate_btn.click(
|
| 184 |
get_seed,
|
| 185 |
+
inputs=[randomize_seed,seed], outputs=[seed]
|
|
|
|
| 186 |
).then(
|
| 187 |
text_to_3d,
|
| 188 |
+
inputs=[text_prompt,seed,ss_guidance_strength,ss_sampling_steps,slat_guidance_strength,slat_sampling_steps],
|
| 189 |
+
outputs=[output_buf,video_output]
|
| 190 |
+
).then(lambda: (extract_glb_btn.update(interactive=True),extract_gs_btn.update(interactive=True)), outputs=[extract_glb_btn,extract_gs_btn])
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
extract_glb_btn.click(
|
| 193 |
extract_glb,
|
| 194 |
+
inputs=[output_buf,mesh_simplify,texture_size],
|
| 195 |
+
outputs=[model_output,download_glb]
|
| 196 |
+
).then(lambda: download_glb.update(interactive=True), outputs=[download_glb])
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
extract_gs_btn.click(
|
| 199 |
extract_gaussian,
|
| 200 |
+
inputs=[output_buf], outputs=[model_output,download_gs]
|
| 201 |
+
).then(lambda: download_gs.update(interactive=True), outputs=[download_gs])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
model_output.clear(lambda: (download_glb.update(interactive=False),download_gs.update(interactive=False)), outputs=[download_glb,download_gs])
|
| 204 |
+
video_output.clear(lambda: (extract_glb_btn.update(interactive=False),extract_gs_btn.update(interactive=False),download_glb.update(interactive=False),download_gs.update(interactive=False)), outputs=[extract_glb_btn,extract_gs_btn,download_glb,download_gs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
demo.queue().launch(debug=True)
|