Spaces:
Running
on
Zero
Running
on
Zero
gemini inside cursor state change
Browse files
app.py
CHANGED
|
@@ -39,7 +39,8 @@ def start_session(req: gr.Request):
|
|
| 39 |
|
| 40 |
def end_session(req: gr.Request):
|
| 41 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 42 |
-
shutil.rmtree
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
@@ -68,15 +69,16 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
| 68 |
opacity_bias=state['gaussian']['opacity_bias'],
|
| 69 |
scaling_activation=state['gaussian']['scaling_activation'],
|
| 70 |
)
|
| 71 |
-
|
| 72 |
-
gs.
|
| 73 |
-
gs.
|
| 74 |
-
gs.
|
| 75 |
-
gs.
|
|
|
|
| 76 |
|
| 77 |
mesh = edict(
|
| 78 |
-
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
| 79 |
-
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 80 |
)
|
| 81 |
|
| 82 |
return gs, mesh
|
|
@@ -98,9 +100,9 @@ def text_to_3d(
|
|
| 98 |
slat_guidance_strength: float,
|
| 99 |
slat_sampling_steps: int,
|
| 100 |
req: gr.Request,
|
| 101 |
-
) ->
|
| 102 |
"""
|
| 103 |
-
Convert
|
| 104 |
Args:
|
| 105 |
prompt (str): The text prompt.
|
| 106 |
seed (int): The random seed.
|
|
@@ -109,11 +111,14 @@ def text_to_3d(
|
|
| 109 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 110 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
| 111 |
Returns:
|
| 112 |
-
dict: The
|
| 113 |
-
str: The path to the video of the 3D model.
|
| 114 |
"""
|
|
|
|
| 115 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 116 |
-
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
| 117 |
outputs = pipeline.run(
|
| 118 |
prompt,
|
| 119 |
seed=seed,
|
|
@@ -127,19 +132,58 @@ def text_to_3d(
|
|
| 127 |
"cfg_strength": slat_guidance_strength,
|
| 128 |
},
|
| 129 |
)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
video =
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
|
| 136 |
# Create the state object and ensure it's JSON serializable for API calls
|
| 137 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 138 |
# Convert to serializable format
|
| 139 |
serializable_state = json.loads(json.dumps(state, cls=NumpyEncoder))
|
| 140 |
|
|
|
|
|
|
|
| 141 |
torch.cuda.empty_cache()
|
| 142 |
-
return serializable_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
|
| 145 |
@spaces.GPU(duration=90)
|
|
@@ -150,50 +194,76 @@ def extract_glb(
|
|
| 150 |
req: gr.Request,
|
| 151 |
) -> Tuple[str, str]:
|
| 152 |
"""
|
| 153 |
-
Extract a GLB file from the 3D model.
|
| 154 |
Args:
|
| 155 |
state (dict): The state of the generated 3D model.
|
| 156 |
mesh_simplify (float): The mesh simplification factor.
|
| 157 |
texture_size (int): The texture resolution.
|
| 158 |
Returns:
|
| 159 |
-
str: The path to the extracted GLB file.
|
|
|
|
| 160 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 162 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
|
|
|
| 163 |
gs, mesh = unpack_state(state)
|
|
|
|
|
|
|
| 164 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 165 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
|
|
|
| 166 |
glb.export(glb_path)
|
|
|
|
| 167 |
torch.cuda.empty_cache()
|
|
|
|
| 168 |
return glb_path, glb_path
|
| 169 |
|
| 170 |
|
| 171 |
@spaces.GPU
|
| 172 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 173 |
"""
|
| 174 |
-
Extract a Gaussian file from the 3D model.
|
| 175 |
Args:
|
| 176 |
state (dict): The state of the generated 3D model.
|
| 177 |
Returns:
|
| 178 |
-
str: The path to the extracted Gaussian file.
|
|
|
|
| 179 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 181 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
|
|
|
| 182 |
gs, _ = unpack_state(state)
|
|
|
|
| 183 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
|
|
|
| 184 |
gs.save_ply(gaussian_path)
|
|
|
|
| 185 |
torch.cuda.empty_cache()
|
|
|
|
| 186 |
return gaussian_path, gaussian_path
|
| 187 |
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
| 191 |
|
| 192 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 193 |
gr.Markdown("""
|
| 194 |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 195 |
* Type a text prompt and click "Generate" to create a 3D asset.
|
| 196 |
-
*
|
|
|
|
| 197 |
""")
|
| 198 |
|
| 199 |
with gr.Row():
|
|
@@ -219,6 +289,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 219 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 220 |
|
| 221 |
with gr.Row():
|
|
|
|
| 222 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 223 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 224 |
gr.Markdown("""
|
|
@@ -226,63 +297,102 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 226 |
""")
|
| 227 |
|
| 228 |
with gr.Column():
|
| 229 |
-
|
|
|
|
| 230 |
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
|
| 231 |
|
| 232 |
with gr.Row():
|
|
|
|
| 233 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 234 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
| 235 |
|
|
|
|
| 236 |
output_buf = gr.State()
|
| 237 |
|
| 238 |
-
# Handlers
|
| 239 |
demo.load(start_session)
|
| 240 |
demo.unload(end_session)
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
generate_btn.click(
|
| 243 |
get_seed,
|
| 244 |
inputs=[randomize_seed, seed],
|
| 245 |
outputs=[seed],
|
|
|
|
| 246 |
).then(
|
| 247 |
text_to_3d,
|
| 248 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
| 249 |
-
outputs=[output_buf,
|
|
|
|
| 250 |
).then(
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 253 |
)
|
| 254 |
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 257 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 258 |
)
|
| 259 |
|
|
|
|
|
|
|
| 260 |
extract_glb_btn.click(
|
| 261 |
extract_glb,
|
| 262 |
inputs=[output_buf, mesh_simplify, texture_size],
|
| 263 |
-
outputs=[model_output, download_glb],
|
|
|
|
| 264 |
).then(
|
| 265 |
-
lambda: gr.Button(interactive=True),
|
| 266 |
outputs=[download_glb],
|
| 267 |
)
|
| 268 |
|
|
|
|
| 269 |
extract_gs_btn.click(
|
| 270 |
extract_gaussian,
|
| 271 |
inputs=[output_buf],
|
| 272 |
-
outputs=[model_output, download_gs],
|
|
|
|
| 273 |
).then(
|
| 274 |
-
lambda: gr.Button(interactive=True),
|
| 275 |
outputs=[download_gs],
|
| 276 |
)
|
| 277 |
|
|
|
|
| 278 |
model_output.clear(
|
| 279 |
-
lambda: gr.Button(interactive=False),
|
| 280 |
-
outputs=[download_glb],
|
| 281 |
)
|
| 282 |
|
| 283 |
|
| 284 |
-
# Launch the Gradio app
|
| 285 |
if __name__ == "__main__":
|
| 286 |
-
|
| 287 |
-
pipeline
|
| 288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def end_session(req: gr.Request):
|
| 41 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 42 |
+
# Use shutil.rmtree with ignore_errors=True for robustness
|
| 43 |
+
shutil.rmtree(user_dir, ignore_errors=True)
|
| 44 |
|
| 45 |
|
| 46 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
|
|
| 69 |
opacity_bias=state['gaussian']['opacity_bias'],
|
| 70 |
scaling_activation=state['gaussian']['scaling_activation'],
|
| 71 |
)
|
| 72 |
+
# Ensure tensors are created on the correct device ('cuda')
|
| 73 |
+
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda', dtype=torch.float32)
|
| 74 |
+
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda', dtype=torch.float32)
|
| 75 |
+
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda', dtype=torch.float32)
|
| 76 |
+
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda', dtype=torch.float32)
|
| 77 |
+
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda', dtype=torch.float32)
|
| 78 |
|
| 79 |
mesh = edict(
|
| 80 |
+
vertices=torch.tensor(state['mesh']['vertices'], device='cuda', dtype=torch.float32),
|
| 81 |
+
faces=torch.tensor(state['mesh']['faces'], device='cuda', dtype=torch.int64), # Faces are usually integers
|
| 82 |
)
|
| 83 |
|
| 84 |
return gs, mesh
|
|
|
|
| 100 |
slat_guidance_strength: float,
|
| 101 |
slat_sampling_steps: int,
|
| 102 |
req: gr.Request,
|
| 103 |
+
) -> dict: # MODIFIED: Now returns only the state dict
|
| 104 |
"""
|
| 105 |
+
Convert a text prompt to a 3D model state object.
|
| 106 |
Args:
|
| 107 |
prompt (str): The text prompt.
|
| 108 |
seed (int): The random seed.
|
|
|
|
| 111 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 112 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
| 113 |
Returns:
|
| 114 |
+
dict: The JSON-serializable state object containing the generated 3D model info.
|
|
|
|
| 115 |
"""
|
| 116 |
+
# Ensure user directory exists (redundant if start_session is always called, but safe)
|
| 117 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 118 |
+
os.makedirs(user_dir, exist_ok=True)
|
| 119 |
+
|
| 120 |
+
print(f"[{req.session_hash}] Running text_to_3d for prompt: {prompt}") # Add logging
|
| 121 |
+
|
| 122 |
outputs = pipeline.run(
|
| 123 |
prompt,
|
| 124 |
seed=seed,
|
|
|
|
| 132 |
"cfg_strength": slat_guidance_strength,
|
| 133 |
},
|
| 134 |
)
|
| 135 |
+
|
| 136 |
+
# REMOVED: Video rendering logic moved to render_preview_video
|
| 137 |
+
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 138 |
+
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 139 |
+
# video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 140 |
+
# video_path = os.path.join(user_dir, 'sample.mp4')
|
| 141 |
+
# imageio.mimsave(video_path, video, fps=15)
|
| 142 |
|
| 143 |
# Create the state object and ensure it's JSON serializable for API calls
|
| 144 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 145 |
# Convert to serializable format
|
| 146 |
serializable_state = json.loads(json.dumps(state, cls=NumpyEncoder))
|
| 147 |
|
| 148 |
+
print(f"[{req.session_hash}] text_to_3d completed. Returning state.") # Add logging
|
| 149 |
+
|
| 150 |
torch.cuda.empty_cache()
|
| 151 |
+
return serializable_state # MODIFIED: Return only state
|
| 152 |
+
|
| 153 |
+
# --- NEW FUNCTION ---
|
| 154 |
+
@spaces.GPU
|
| 155 |
+
def render_preview_video(state: dict, req: gr.Request) -> str:
|
| 156 |
+
"""
|
| 157 |
+
Renders a preview video from the provided state object.
|
| 158 |
+
Args:
|
| 159 |
+
state (dict): The state object containing Gaussian and mesh data.
|
| 160 |
+
req (gr.Request): Gradio request object for session hash.
|
| 161 |
+
Returns:
|
| 162 |
+
str: The path to the rendered video file.
|
| 163 |
+
"""
|
| 164 |
+
if not state:
|
| 165 |
+
print(f"[{req.session_hash}] render_preview_video called with empty state. Returning None.")
|
| 166 |
+
# Consider returning a placeholder or raising an error if state is required
|
| 167 |
+
return None
|
| 168 |
+
|
| 169 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 170 |
+
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
|
| 171 |
+
|
| 172 |
+
print(f"[{req.session_hash}] Unpacking state for video rendering.") # Add logging
|
| 173 |
+
gs, mesh = unpack_state(state)
|
| 174 |
+
|
| 175 |
+
print(f"[{req.session_hash}] Rendering video...") # Add logging
|
| 176 |
+
video = render_utils.render_video(gs, num_frames=120)['color']
|
| 177 |
+
video_geo = render_utils.render_video(mesh, num_frames=120)['normal']
|
| 178 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 179 |
+
|
| 180 |
+
video_path = os.path.join(user_dir, 'preview_sample.mp4') # Use a distinct name
|
| 181 |
+
print(f"[{req.session_hash}] Saving video to {video_path}") # Add logging
|
| 182 |
+
imageio.mimsave(video_path, video, fps=15)
|
| 183 |
+
|
| 184 |
+
torch.cuda.empty_cache()
|
| 185 |
+
return video_path
|
| 186 |
+
# --- END NEW FUNCTION ---
|
| 187 |
|
| 188 |
|
| 189 |
@spaces.GPU(duration=90)
|
|
|
|
| 194 |
req: gr.Request,
|
| 195 |
) -> Tuple[str, str]:
|
| 196 |
"""
|
| 197 |
+
Extract a GLB file from the 3D model state.
|
| 198 |
Args:
|
| 199 |
state (dict): The state of the generated 3D model.
|
| 200 |
mesh_simplify (float): The mesh simplification factor.
|
| 201 |
texture_size (int): The texture resolution.
|
| 202 |
Returns:
|
| 203 |
+
str: The path to the extracted GLB file (for Model3D component).
|
| 204 |
+
str: The path to the extracted GLB file (for DownloadButton).
|
| 205 |
"""
|
| 206 |
+
if not state:
|
| 207 |
+
print(f"[{req.session_hash}] extract_glb called with empty state. Returning None.")
|
| 208 |
+
return None, None # Return Nones if state is missing
|
| 209 |
+
|
| 210 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 211 |
os.makedirs(user_dir, exist_ok=True)
|
| 212 |
+
|
| 213 |
+
print(f"[{req.session_hash}] Unpacking state for GLB extraction.") # Add logging
|
| 214 |
gs, mesh = unpack_state(state)
|
| 215 |
+
|
| 216 |
+
print(f"[{req.session_hash}] Extracting GLB (simplify={mesh_simplify}, texture={texture_size})...") # Add logging
|
| 217 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 218 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 219 |
+
print(f"[{req.session_hash}] Saving GLB to {glb_path}") # Add logging
|
| 220 |
glb.export(glb_path)
|
| 221 |
+
|
| 222 |
torch.cuda.empty_cache()
|
| 223 |
+
# Return the same path for both Model3D and DownloadButton components
|
| 224 |
return glb_path, glb_path
|
| 225 |
|
| 226 |
|
| 227 |
@spaces.GPU
|
| 228 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 229 |
"""
|
| 230 |
+
Extract a Gaussian PLY file from the 3D model state.
|
| 231 |
Args:
|
| 232 |
state (dict): The state of the generated 3D model.
|
| 233 |
Returns:
|
| 234 |
+
str: The path to the extracted Gaussian file (for Model3D component).
|
| 235 |
+
str: The path to the extracted Gaussian file (for DownloadButton).
|
| 236 |
"""
|
| 237 |
+
if not state:
|
| 238 |
+
print(f"[{req.session_hash}] extract_gaussian called with empty state. Returning None.")
|
| 239 |
+
return None, None # Return Nones if state is missing
|
| 240 |
+
|
| 241 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 242 |
os.makedirs(user_dir, exist_ok=True)
|
| 243 |
+
|
| 244 |
+
print(f"[{req.session_hash}] Unpacking state for Gaussian extraction.") # Add logging
|
| 245 |
gs, _ = unpack_state(state)
|
| 246 |
+
|
| 247 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 248 |
+
print(f"[{req.session_hash}] Saving Gaussian PLY to {gaussian_path}") # Add logging
|
| 249 |
gs.save_ply(gaussian_path)
|
| 250 |
+
|
| 251 |
torch.cuda.empty_cache()
|
| 252 |
+
# Return the same path for both Model3D and DownloadButton components
|
| 253 |
return gaussian_path, gaussian_path
|
| 254 |
|
| 255 |
|
| 256 |
+
# State object to hold the generated model info between steps
|
| 257 |
+
output_buf = gr.State()
|
| 258 |
+
# Video component placeholder (will be populated by render_preview_video)
|
| 259 |
+
# video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) # Defined later inside the Blocks
|
| 260 |
|
| 261 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 262 |
gr.Markdown("""
|
| 263 |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 264 |
* Type a text prompt and click "Generate" to create a 3D asset.
|
| 265 |
+
* The preview video will appear after generation.
|
| 266 |
+
* If you find the generated 3D asset satisfactory, click "Extract GLB" or "Extract Gaussian" to extract the file and download it.
|
| 267 |
""")
|
| 268 |
|
| 269 |
with gr.Row():
|
|
|
|
| 289 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 290 |
|
| 291 |
with gr.Row():
|
| 292 |
+
# Buttons start non-interactive, enabled after generation
|
| 293 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 294 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 295 |
gr.Markdown("""
|
|
|
|
| 297 |
""")
|
| 298 |
|
| 299 |
with gr.Column():
|
| 300 |
+
# Define UI components here
|
| 301 |
+
video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300)
|
| 302 |
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
|
| 303 |
|
| 304 |
with gr.Row():
|
| 305 |
+
# Buttons start non-interactive, enabled after extraction
|
| 306 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 307 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
| 308 |
|
| 309 |
+
# Define the state buffer here, outside the component definitions but inside the Blocks scope
|
| 310 |
output_buf = gr.State()
|
| 311 |
|
| 312 |
+
# --- Handlers ---
|
| 313 |
demo.load(start_session)
|
| 314 |
demo.unload(end_session)
|
| 315 |
|
| 316 |
+
# --- MODIFIED UI CHAIN ---
|
| 317 |
+
# 1. Get Seed
|
| 318 |
+
# 2. Run text_to_3d -> outputs state to output_buf
|
| 319 |
+
# 3. Run render_preview_video (using state from output_buf) -> outputs video to video_output
|
| 320 |
+
# 4. Enable extraction buttons
|
| 321 |
generate_btn.click(
|
| 322 |
get_seed,
|
| 323 |
inputs=[randomize_seed, seed],
|
| 324 |
outputs=[seed],
|
| 325 |
+
queue=True # Use queue for potentially long-running steps
|
| 326 |
).then(
|
| 327 |
text_to_3d,
|
| 328 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
| 329 |
+
outputs=[output_buf], # text_to_3d now ONLY outputs state
|
| 330 |
+
api_name="text_to_3d" # Keep API name consistent if needed
|
| 331 |
).then(
|
| 332 |
+
render_preview_video, # NEW step: Render video from state
|
| 333 |
+
inputs=[output_buf],
|
| 334 |
+
outputs=[video_output],
|
| 335 |
+
api_name="render_preview_video" # Assign API name if you want to call this separately
|
| 336 |
+
).then(
|
| 337 |
+
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), # Enable extraction buttons
|
| 338 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 339 |
)
|
| 340 |
|
| 341 |
+
# Clear video and disable extraction buttons if prompt is cleared or generation restarted
|
| 342 |
+
# (Consider adding logic to clear prompt on successful generation if desired)
|
| 343 |
+
text_prompt.change( # Example: Clear video if prompt changes
|
| 344 |
+
lambda: (None, gr.Button(interactive=False), gr.Button(interactive=False)),
|
| 345 |
+
outputs=[video_output, extract_glb_btn, extract_gs_btn]
|
| 346 |
+
)
|
| 347 |
+
video_output.clear( # This might be redundant if text_prompt.change handles it
|
| 348 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 349 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 350 |
)
|
| 351 |
|
| 352 |
+
# --- Extraction Handlers ---
|
| 353 |
+
# GLB Extraction: Takes state from output_buf, outputs model and download path
|
| 354 |
extract_glb_btn.click(
|
| 355 |
extract_glb,
|
| 356 |
inputs=[output_buf, mesh_simplify, texture_size],
|
| 357 |
+
outputs=[model_output, download_glb], # Outputs to Model3D and DownloadButton path
|
| 358 |
+
api_name="extract_glb"
|
| 359 |
).then(
|
| 360 |
+
lambda: gr.Button(interactive=True), # Enable download button
|
| 361 |
outputs=[download_glb],
|
| 362 |
)
|
| 363 |
|
| 364 |
+
# Gaussian Extraction: Takes state from output_buf, outputs model and download path
|
| 365 |
extract_gs_btn.click(
|
| 366 |
extract_gaussian,
|
| 367 |
inputs=[output_buf],
|
| 368 |
+
outputs=[model_output, download_gs], # Outputs to Model3D and DownloadButton path
|
| 369 |
+
api_name="extract_gaussian"
|
| 370 |
).then(
|
| 371 |
+
lambda: gr.Button(interactive=True), # Enable download button
|
| 372 |
outputs=[download_gs],
|
| 373 |
)
|
| 374 |
|
| 375 |
+
# Clear model and disable download buttons if video/state is cleared
|
| 376 |
model_output.clear(
|
| 377 |
+
lambda: (gr.Button(interactive=False), gr.Button(interactive=False)),
|
| 378 |
+
outputs=[download_glb, download_gs], # Disable both download buttons
|
| 379 |
)
|
| 380 |
|
| 381 |
|
| 382 |
+
# --- Launch the Gradio app ---
|
| 383 |
if __name__ == "__main__":
|
| 384 |
+
print("Loading Trellis pipeline...")
|
| 385 |
+
# Consider adding error handling for pipeline loading
|
| 386 |
+
try:
|
| 387 |
+
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|
| 388 |
+
pipeline.cuda()
|
| 389 |
+
print("Pipeline loaded successfully.")
|
| 390 |
+
except Exception as e:
|
| 391 |
+
print(f"Error loading pipeline: {e}")
|
| 392 |
+
# Optionally exit or provide a fallback UI
|
| 393 |
+
sys.exit(1)
|
| 394 |
+
|
| 395 |
+
print("Launching Gradio demo...")
|
| 396 |
+
# Enable queue for handling multiple users/requests
|
| 397 |
+
# Set share=True if you need a public link (requires login for private spaces)
|
| 398 |
+
demo.queue().launch()
|