Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
fbc801f
1
Parent(s):
2e78ab8
fix
Browse files
app.py
CHANGED
|
@@ -19,7 +19,7 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
|
| 21 |
|
| 22 |
-
def preprocess_image(image: Image.Image) -> Tuple[
|
| 23 |
"""
|
| 24 |
Preprocess the input image.
|
| 25 |
|
|
@@ -31,7 +31,7 @@ def preprocess_image(image: Image.Image) -> Tuple[np.ndarray, Image.Image]:
|
|
| 31 |
Image.Image: The preprocessed image.
|
| 32 |
"""
|
| 33 |
processed_image = pipeline.preprocess_image(image)
|
| 34 |
-
return np.array(processed_image), processed_image
|
| 35 |
|
| 36 |
|
| 37 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, model_id: str) -> dict:
|
|
@@ -76,12 +76,12 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
| 76 |
|
| 77 |
|
| 78 |
@spaces.GPU
|
| 79 |
-
def image_to_3d(image:
|
| 80 |
"""
|
| 81 |
Convert an image to a 3D model.
|
| 82 |
|
| 83 |
Args:
|
| 84 |
-
image (
|
| 85 |
seed (int): The random seed.
|
| 86 |
randomize_seed (bool): Whether to randomize the seed.
|
| 87 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
|
@@ -96,7 +96,7 @@ def image_to_3d(image: np.array, seed: int, randomize_seed: bool, ss_guidance_st
|
|
| 96 |
if randomize_seed:
|
| 97 |
seed = np.random.randint(0, MAX_SEED)
|
| 98 |
outputs = pipeline.run(
|
| 99 |
-
Image.fromarray(image),
|
| 100 |
seed=seed,
|
| 101 |
formats=["gaussian", "mesh"],
|
| 102 |
preprocess_image=False,
|
|
|
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
|
| 21 |
|
| 22 |
+
def preprocess_image(image: Image.Image) -> Tuple[dict, Image.Image]:
|
| 23 |
"""
|
| 24 |
Preprocess the input image.
|
| 25 |
|
|
|
|
| 31 |
Image.Image: The preprocessed image.
|
| 32 |
"""
|
| 33 |
processed_image = pipeline.preprocess_image(image)
|
| 34 |
+
return {'image': np.array(processed_image)}, processed_image
|
| 35 |
|
| 36 |
|
| 37 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, model_id: str) -> dict:
|
|
|
|
| 76 |
|
| 77 |
|
| 78 |
@spaces.GPU
|
| 79 |
+
def image_to_3d(image: dict, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
|
| 80 |
"""
|
| 81 |
Convert an image to a 3D model.
|
| 82 |
|
| 83 |
Args:
|
| 84 |
+
image (dict): The input image.
|
| 85 |
seed (int): The random seed.
|
| 86 |
randomize_seed (bool): Whether to randomize the seed.
|
| 87 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
|
|
|
| 96 |
if randomize_seed:
|
| 97 |
seed = np.random.randint(0, MAX_SEED)
|
| 98 |
outputs = pipeline.run(
|
| 99 |
+
Image.fromarray(image['image']),
|
| 100 |
seed=seed,
|
| 101 |
formats=["gaussian", "mesh"],
|
| 102 |
preprocess_image=False,
|